![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necomd | Unicode version |
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
Ref | Expression |
---|---|
necomd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necomd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | necom 2333 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylib 120 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-5 1377 ax-gen 1379 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-cleq 2076 df-ne 2250 |
This theorem is referenced by: difsnb 3548 0nelop 4031 frecabcl 6068 fidifsnen 6426 en2eleq 6573 en2other2 6574 ltned 7343 lt0ne0 7651 zdceq 8556 zneo 8581 xrlttri3 9000 qdceq 9385 flqltnz 9421 expival 9627 nn0opthd 9798 hashdifpr 9896 isprm2lem 10705 |
Copyright terms: Public domain | W3C validator |