![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necomi | Unicode version |
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
necomi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necomi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | necom 2333 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 143 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-5 1377 ax-gen 1379 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-cleq 2076 df-ne 2250 |
This theorem is referenced by: 0nep0 3959 xp01disj 6102 djuin 6562 pnfnemnf 7305 mnfnepnf 7306 ltneii 7344 1ne0 8244 0ne2 8374 fzprval 9245 |
Copyright terms: Public domain | W3C validator |