![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necon2bi | Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
Ref | Expression |
---|---|
necon2bi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necon2bi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | neneqd 2267 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | con2i 590 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-in1 577 ax-in2 578 |
This theorem depends on definitions: df-bi 115 df-ne 2247 |
This theorem is referenced by: minel 3312 rzal 3346 difsnb 3536 fin0 6419 0npi 6565 0nsr 6988 renfdisj 7239 nltpnft 8960 ngtmnft 8961 xrrebnd 8962 sizenncl 9820 rennim 10026 |
Copyright terms: Public domain | W3C validator |