![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negcl | Unicode version |
Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
Ref | Expression |
---|---|
negcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 7401 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 0cn 7225 |
. . 3
![]() ![]() ![]() ![]() | |
3 | subcl 7426 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpan 415 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | syl5eqel 2169 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-setind 4308 ax-resscn 7182 ax-1cn 7183 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-addcom 7190 ax-addass 7192 ax-distr 7194 ax-i2m1 7195 ax-0id 7198 ax-rnegex 7199 ax-cnre 7201 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-iota 4917 df-fun 4954 df-fv 4960 df-riota 5519 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-sub 7400 df-neg 7401 |
This theorem is referenced by: negicn 7428 negcon1 7479 negdi 7484 negdi2 7485 negsubdi2 7486 neg2sub 7487 negcli 7495 negcld 7525 mulneg2 7619 mul2neg 7621 mulsub 7624 divnegap 7913 divsubdirap 7915 divsubdivap 7935 eqneg 7939 div2negap 7942 divneg2ap 7943 zeo 8585 sqneg 9684 binom2sub 9736 shftval4 9917 shftcan1 9923 shftcan2 9924 crim 9946 resub 9958 imsub 9966 cjneg 9978 cjsub 9980 absneg 10137 abs2dif2 10194 subcn2 10351 |
Copyright terms: Public domain | W3C validator |