![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negeq | Unicode version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5572 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-neg 7385 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-neg 7385 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3eqtr4g 2140 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-rex 2359 df-v 2612 df-un 2987 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-br 3807 df-iota 4918 df-fv 4961 df-ov 5567 df-neg 7385 |
This theorem is referenced by: negeqi 7405 negeqd 7406 neg11 7462 negf1o 7589 recexre 7781 negiso 8136 elz 8470 znegcl 8499 zaddcllemneg 8507 elz2 8536 zindd 8582 infrenegsupex 8799 supinfneg 8800 infsupneg 8801 supminfex 8802 ublbneg 8815 eqreznegel 8816 negm 8817 qnegcl 8838 xnegeq 9006 ceilqval 9424 expival 9611 expnegap0 9617 m1expcl2 9631 negfi 10295 dvdsnegb 10404 infssuzex 10536 infssuzcldc 10538 lcmneg 10647 znnen 10802 ex-ceil 10808 |
Copyright terms: Public domain | W3C validator |