ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nexr Unicode version

Theorem nexr 1623
Description: Inference from 19.8a 1523. (Contributed by Jeff Hankins, 26-Jul-2009.)
Hypothesis
Ref Expression
nexr.1  |-  -.  E. x ph
Assertion
Ref Expression
nexr  |-  -.  ph

Proof of Theorem nexr
StepHypRef Expression
1 nexr.1 . 2  |-  -.  E. x ph
2 19.8a 1523 . 2  |-  ( ph  ->  E. x ph )
31, 2mto 621 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3   E.wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441
This theorem depends on definitions:  df-bi 115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator