ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfaba1 Unicode version

Theorem nfaba1 2225
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfaba1  |-  F/_ x { y  |  A. x ph }

Proof of Theorem nfaba1
StepHypRef Expression
1 nfa1 1475 . 2  |-  F/ x A. x ph
21nfab 2224 1  |-  F/_ x { y  |  A. x ph }
Colors of variables: wff set class
Syntax hints:   A.wal 1283   {cab 2068   F/_wnfc 2207
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-nfc 2209
This theorem is referenced by:  nfopd  3595  nfimad  4707  nfiota1  4899  nffvd  5218
  Copyright terms: Public domain W3C validator