ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfalt Unicode version

Theorem nfalt 1486
Description: Closed form of nfal 1484. (Contributed by Jim Kingdon, 11-May-2018.)
Assertion
Ref Expression
nfalt  |-  ( A. y F/ x ph  ->  F/ x A. y ph )

Proof of Theorem nfalt
StepHypRef Expression
1 alim 1362 . . . 4  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. y A. x ph ) )
2 alcom 1383 . . . 4  |-  ( A. y A. x ph  <->  A. x A. y ph )
31, 2syl6ib 154 . . 3  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. x A. y ph ) )
43alimi 1360 . 2  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. x ( A. y ph  ->  A. x A. y ph ) )
5 df-nf 1366 . . . 4  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
65albii 1375 . . 3  |-  ( A. y F/ x ph  <->  A. y A. x ( ph  ->  A. x ph ) )
7 alcom 1383 . . 3  |-  ( A. y A. x ( ph  ->  A. x ph )  <->  A. x A. y (
ph  ->  A. x ph )
)
86, 7bitri 177 . 2  |-  ( A. y F/ x ph  <->  A. x A. y ( ph  ->  A. x ph ) )
9 df-nf 1366 . 2  |-  ( F/ x A. y ph  <->  A. x ( A. y ph  ->  A. x A. y ph ) )
104, 8, 93imtr4i 194 1  |-  ( A. y F/ x ph  ->  F/ x A. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1257   F/wnf 1365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354
This theorem depends on definitions:  df-bi 114  df-nf 1366
This theorem is referenced by:  dvelimor  1910
  Copyright terms: Public domain W3C validator