![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfan | Unicode version |
Description: If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfan.1 |
![]() ![]() ![]() ![]() |
nfan.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfan |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfan.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfan.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | nfan1 1497 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-4 1441 |
This theorem depends on definitions: df-bi 115 df-nf 1391 |
This theorem is referenced by: nf3an 1499 cbvex2 1839 nfsbxyt 1861 sbcomxyyz 1888 nfsb4t 1932 clelab 2204 nfel 2228 2ralbida 2388 reean 2523 nfrabxy 2535 cbvrexf 2573 cbvreu 2576 cbvrab 2600 ceqsex2 2640 vtocl2gaf 2666 rspce 2697 eqvincf 2721 elrabf 2748 elrab3t 2749 rexab2 2759 morex 2777 reu2 2781 sbc2iegf 2885 rmo2ilem 2904 rmo3 2906 csbiebt 2943 csbie2t 2951 cbvrexcsf 2966 cbvreucsf 2967 cbvrabcsf 2968 nfopd 3595 eluniab 3621 dfnfc2 3627 nfdisjv 3786 nfopab 3854 cbvopab 3857 cbvopab1 3859 cbvopab2 3860 cbvopab1s 3861 mpteq12f 3866 nfmpt 3878 cbvmpt 3880 repizf2 3944 nfpo 4064 nfso 4065 nfwe 4118 onintonm 4269 peano2 4344 nfxp 4397 opeliunxp 4421 nfco 4529 elrnmpt1 4613 nfimad 4707 iota2 4923 dffun4f 4948 nffun 4954 imadif 5010 funimaexglem 5013 nffn 5026 nff 5074 nff1 5121 nffo 5136 nff1o 5155 fun11iun 5178 nffvd 5218 fv3 5229 fmptco 5362 nfiso 5477 cbvriota 5509 riota2df 5519 riota5f 5523 nfoprab 5588 mpt2eq123 5595 nfmpt2 5604 cbvoprab1 5607 cbvoprab2 5608 cbvoprab12 5609 cbvoprab3 5611 cbvmpt2x 5613 ovmpt2dxf 5657 opabex3d 5779 opabex3 5780 dfoprab4f 5850 fmpt2x 5857 spc2ed 5885 cnvoprab 5886 f1od2 5887 nfrecs 5956 tfr1onlemaccex 5997 tfrcllemaccex 6010 tfri3 6016 nffrec 6045 erovlem 6264 xpf1o 6385 nneneq 6392 ac6sfi 6431 nfsup 6464 caucvgsrlemgt1 7033 supinfneg 8764 infsupneg 8765 fimaxre2 10247 nfsum1 10331 nfsum 10332 zsupcllemstep 10485 bezoutlemmain 10531 bezoutlemzz 10535 bezout 10544 bdsepnft 10836 bdsepnfALT 10838 bj-findis 10932 strcollnft 10937 |
Copyright terms: Public domain | W3C validator |