ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiso Unicode version

Theorem nfiso 5471
Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfiso.1  |-  F/_ x H
nfiso.2  |-  F/_ x R
nfiso.3  |-  F/_ x S
nfiso.4  |-  F/_ x A
nfiso.5  |-  F/_ x B
Assertion
Ref Expression
nfiso  |-  F/ x  H  Isom  R ,  S  ( A ,  B )

Proof of Theorem nfiso
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 4935 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. y  e.  A  A. z  e.  A  ( y R z  <-> 
( H `  y
) S ( H `
 z ) ) ) )
2 nfiso.1 . . . 4  |-  F/_ x H
3 nfiso.4 . . . 4  |-  F/_ x A
4 nfiso.5 . . . 4  |-  F/_ x B
52, 3, 4nff1o 5149 . . 3  |-  F/ x  H : A -1-1-onto-> B
6 nfcv 2220 . . . . . . 7  |-  F/_ x
y
7 nfiso.2 . . . . . . 7  |-  F/_ x R
8 nfcv 2220 . . . . . . 7  |-  F/_ x
z
96, 7, 8nfbr 3831 . . . . . 6  |-  F/ x  y R z
102, 6nffv 5210 . . . . . . 7  |-  F/_ x
( H `  y
)
11 nfiso.3 . . . . . . 7  |-  F/_ x S
122, 8nffv 5210 . . . . . . 7  |-  F/_ x
( H `  z
)
1310, 11, 12nfbr 3831 . . . . . 6  |-  F/ x
( H `  y
) S ( H `
 z )
149, 13nfbi 1522 . . . . 5  |-  F/ x
( y R z  <-> 
( H `  y
) S ( H `
 z ) )
153, 14nfralxy 2403 . . . 4  |-  F/ x A. z  e.  A  ( y R z  <-> 
( H `  y
) S ( H `
 z ) )
163, 15nfralxy 2403 . . 3  |-  F/ x A. y  e.  A  A. z  e.  A  ( y R z  <-> 
( H `  y
) S ( H `
 z ) )
175, 16nfan 1498 . 2  |-  F/ x
( H : A -1-1-onto-> B  /\  A. y  e.  A  A. z  e.  A  ( y R z  <-> 
( H `  y
) S ( H `
 z ) ) )
181, 17nfxfr 1404 1  |-  F/ x  H  Isom  R ,  S  ( A ,  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   F/wnf 1390   F/_wnfc 2207   A.wral 2349   class class class wbr 3787   -1-1-onto->wf1o 4925   ` cfv 4926    Isom wiso 4927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-opab 3842  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-isom 4935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator