Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfop Unicode version

Theorem nfop 3606
 Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfop.1
nfop.2
Assertion
Ref Expression
nfop

Proof of Theorem nfop
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-op 3425 . 2
2 nfop.1 . . . . 5
32nfel1 2233 . . . 4
4 nfop.2 . . . . 5
54nfel1 2233 . . . 4
62nfsn 3470 . . . . . 6
72, 4nfpr 3460 . . . . . 6
86, 7nfpr 3460 . . . . 5
98nfcri 2217 . . . 4
103, 5, 9nf3an 1499 . . 3
1110nfab 2227 . 2
121, 11nfcxfr 2220 1
 Colors of variables: wff set class Syntax hints:   w3a 920   wcel 1434  cab 2069  wnfc 2210  cvv 2610  csn 3416  cpr 3417  cop 3419 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-un 2986  df-sn 3422  df-pr 3423  df-op 3425 This theorem is referenced by:  nfopd  3607  moop2  4034  fliftfuns  5490  dfmpt2  5896  qliftfuns  6278  xpf1o  6407  caucvgprprlemaddq  7030  nfiseq  9598
 Copyright terms: Public domain W3C validator