Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralya Unicode version

Theorem nfralya 2379
 Description: Not-free for restricted universal quantification where and are distinct. See nfralxy 2377 for a version with and distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
Hypotheses
Ref Expression
nfralya.1
nfralya.2
Assertion
Ref Expression
nfralya
Distinct variable group:   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem nfralya
StepHypRef Expression
1 nftru 1371 . . 3
2 nfralya.1 . . . 4
32a1i 9 . . 3
4 nfralya.2 . . . 4
54a1i 9 . . 3
61, 3, 5nfraldya 2375 . 2
76trud 1268 1
 Colors of variables: wff set class Syntax hints:   wtru 1260  wnf 1365  wnfc 2181  wral 2323 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328 This theorem is referenced by:  nfiinya  3714  nfsup  6398  caucvgsrlemgt1  6937
 Copyright terms: Public domain W3C validator