![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsb | Unicode version |
Description: If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfsb.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfsb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsb.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | nfsbxy 1860 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | nfsbxy 1860 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | ax-17 1460 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | sbco2v 1863 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | nfbii 1403 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 3, 6 | mpbi 143 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 |
This theorem is referenced by: hbsb 1865 sbco2yz 1879 sbcomxyyz 1888 hbsbd 1900 nfsb4or 1941 sb8eu 1955 nfeu 1961 cbvab 2202 cbvralf 2572 cbvrexf 2573 cbvreu 2576 cbvralsv 2589 cbvrexsv 2590 cbvrab 2600 cbvreucsf 2967 cbvrabcsf 2968 cbvopab1 3859 cbvmpt 3880 ralxpf 4510 rexxpf 4511 cbviota 4902 sb8iota 4904 cbvriota 5509 dfoprab4f 5850 |
Copyright terms: Public domain | W3C validator |