ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfth Unicode version

Theorem nfth 1394
Description: No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
hbth.1  |-  ph
Assertion
Ref Expression
nfth  |-  F/ x ph

Proof of Theorem nfth
StepHypRef Expression
1 hbth.1 . . 3  |-  ph
21hbth 1393 . 2  |-  ( ph  ->  A. x ph )
32nfi 1392 1  |-  F/ x ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-gen 1379
This theorem depends on definitions:  df-bi 115  df-nf 1391
This theorem is referenced by:  nftru  1396  nfequid  1631  sbt  1708  sbc2ie  2886
  Copyright terms: Public domain W3C validator