![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0ge0d | Unicode version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nn0ge0d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nn0ge0 8416 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-cnex 7165 ax-resscn 7166 ax-1cn 7167 ax-1re 7168 ax-icn 7169 ax-addcl 7170 ax-addrcl 7171 ax-mulcl 7172 ax-i2m1 7179 ax-0lt1 7180 ax-0id 7182 ax-rnegex 7183 ax-pre-ltirr 7186 ax-pre-ltwlin 7187 ax-pre-lttrn 7188 ax-pre-ltadd 7190 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-br 3807 df-opab 3861 df-xp 4398 df-cnv 4400 df-iota 4918 df-fv 4961 df-ov 5567 df-pnf 7253 df-mnf 7254 df-xr 7255 df-ltxr 7256 df-le 7257 df-inn 8143 df-n0 8392 |
This theorem is referenced by: flqmulnn0 9417 zmodfz 9464 addmodid 9490 modifeq2int 9504 modaddmodlo 9506 modsumfzodifsn 9514 addmodlteq 9516 expinnval 9612 nn0le2msqd 9779 facwordi 9800 faclbnd 9801 faclbnd6 9804 facavg 9806 oexpneg 10468 divalglemnn 10509 divalglemnqt 10511 divalglemeunn 10512 divalg2 10517 dfgcd2 10594 gcdmultiple 10600 gcdmultiplez 10601 dvdssqlem 10610 nn0seqcvgd 10614 mulgcddvds 10667 nn0sqrtelqelz 10775 nonsq 10776 phibndlem 10783 dfphi2 10787 |
Copyright terms: Public domain | W3C validator |