ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ge2m1nn Unicode version

Theorem nn0ge2m1nn 8415
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
Assertion
Ref Expression
nn0ge2m1nn  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  -  1 )  e.  NN )

Proof of Theorem nn0ge2m1nn
StepHypRef Expression
1 simpl 107 . . . . 5  |-  ( ( N  e.  NN0  /\  2  <_  N )  ->  N  e.  NN0 )
2 1red 7196 . . . . . . . 8  |-  ( N  e.  NN0  ->  1  e.  RR )
3 2re 8176 . . . . . . . . 9  |-  2  e.  RR
43a1i 9 . . . . . . . 8  |-  ( N  e.  NN0  ->  2  e.  RR )
5 nn0re 8364 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  RR )
62, 4, 53jca 1119 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  e.  RR  /\  2  e.  RR  /\  N  e.  RR ) )
76adantr 270 . . . . . 6  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( 1  e.  RR  /\  2  e.  RR  /\  N  e.  RR )
)
8 simpr 108 . . . . . . 7  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
2  <_  N )
9 1lt2 8268 . . . . . . 7  |-  1  <  2
108, 9jctil 305 . . . . . 6  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( 1  <  2  /\  2  <_  N ) )
11 ltleletr 7260 . . . . . 6  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  N  e.  RR )  ->  (
( 1  <  2  /\  2  <_  N )  ->  1  <_  N
) )
127, 10, 11sylc 61 . . . . 5  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
1  <_  N )
13 elnnnn0c 8400 . . . . 5  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  1  <_  N ) )
141, 12, 13sylanbrc 408 . . . 4  |-  ( ( N  e.  NN0  /\  2  <_  N )  ->  N  e.  NN )
15 nn1m1nn 8124 . . . 4  |-  ( N  e.  NN  ->  ( N  =  1  \/  ( N  -  1
)  e.  NN ) )
1614, 15syl 14 . . 3  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  =  1  \/  ( N  - 
1 )  e.  NN ) )
17 1re 7180 . . . . . . . . . . 11  |-  1  e.  RR
183, 17lenlti 7278 . . . . . . . . . 10  |-  ( 2  <_  1  <->  -.  1  <  2 )
1918biimpi 118 . . . . . . . . 9  |-  ( 2  <_  1  ->  -.  1  <  2 )
209, 19mt2 602 . . . . . . . 8  |-  -.  2  <_  1
21 breq2 3797 . . . . . . . 8  |-  ( N  =  1  ->  (
2  <_  N  <->  2  <_  1 ) )
2220, 21mtbiri 633 . . . . . . 7  |-  ( N  =  1  ->  -.  2  <_  N )
2322pm2.21d 582 . . . . . 6  |-  ( N  =  1  ->  (
2  <_  N  ->  ( N  -  1 )  e.  NN ) )
2423com12 30 . . . . 5  |-  ( 2  <_  N  ->  ( N  =  1  ->  ( N  -  1 )  e.  NN ) )
2524adantl 271 . . . 4  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  =  1  ->  ( N  - 
1 )  e.  NN ) )
2625orim1d 734 . . 3  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( ( N  =  1  \/  ( N  -  1 )  e.  NN )  ->  (
( N  -  1 )  e.  NN  \/  ( N  -  1
)  e.  NN ) ) )
2716, 26mpd 13 . 2  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( ( N  - 
1 )  e.  NN  \/  ( N  -  1 )  e.  NN ) )
28 oridm 707 . 2  |-  ( ( ( N  -  1 )  e.  NN  \/  ( N  -  1
)  e.  NN )  <-> 
( N  -  1 )  e.  NN )
2927, 28sylib 120 1  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  -  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 662    /\ w3a 920    = wceq 1285    e. wcel 1434   class class class wbr 3793  (class class class)co 5543   RRcr 7042   1c1 7044    < clt 7215    <_ cle 7216    - cmin 7346   NNcn 8106   2c2 8156   NN0cn0 8355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-ltadd 7154
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-inn 8107  df-2 8165  df-n0 8356
This theorem is referenced by:  nn0ge2m1nn0  8416
  Copyright terms: Public domain W3C validator