ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0mulcli Unicode version

Theorem nn0mulcli 8382
Description: Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0addcl.1  |-  M  e. 
NN0
nn0addcl.2  |-  N  e. 
NN0
Assertion
Ref Expression
nn0mulcli  |-  ( M  x.  N )  e. 
NN0

Proof of Theorem nn0mulcli
StepHypRef Expression
1 nn0addcl.1 . 2  |-  M  e. 
NN0
2 nn0addcl.2 . 2  |-  N  e. 
NN0
3 nn0mulcl 8380 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  x.  N
)  e.  NN0 )
41, 2, 3mp2an 417 1  |-  ( M  x.  N )  e. 
NN0
Colors of variables: wff set class
Syntax hints:    e. wcel 1434  (class class class)co 5537    x. cmul 7037   NN0cn0 8344
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-setind 4282  ax-cnex 7118  ax-resscn 7119  ax-1cn 7120  ax-1re 7121  ax-icn 7122  ax-addcl 7123  ax-addrcl 7124  ax-mulcl 7125  ax-addcom 7127  ax-mulcom 7128  ax-addass 7129  ax-mulass 7130  ax-distr 7131  ax-i2m1 7132  ax-1rid 7134  ax-0id 7135  ax-rnegex 7136  ax-cnre 7138
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-br 3788  df-opab 3842  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-iota 4891  df-fun 4928  df-fv 4934  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-sub 7337  df-inn 8096  df-n0 8345
This theorem is referenced by:  numnncl  8556  num0u  8557  numcl  8559  numsuc  8560  numlt  8571  decle  8580  decrmanc  8603  decsubi  8609  decmul1  8610  decmulnc  8613  decmul10add  8615  expnass  9666
  Copyright terms: Public domain W3C validator