ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0o1gt2 Unicode version

Theorem nn0o1gt2 11591
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o1gt2  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )

Proof of Theorem nn0o1gt2
StepHypRef Expression
1 elnn0 8972 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 elnnnn0c 9015 . . . . 5  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  1  <_  N ) )
3 1z 9073 . . . . . . . 8  |-  1  e.  ZZ
4 nn0z 9067 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5 zleloe 9094 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N )
) )
63, 4, 5sylancr 410 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
7 1zzd 9074 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  1  e.  ZZ )
8 zltp1le 9101 . . . . . . . . . . . . 13  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
97, 4, 8syl2anc 408 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
10 1p1e2 8830 . . . . . . . . . . . . . 14  |-  ( 1  +  1 )  =  2
1110breq1i 3931 . . . . . . . . . . . . 13  |-  ( ( 1  +  1 )  <_  N  <->  2  <_  N )
1211a1i 9 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( ( 1  +  1 )  <_  N  <->  2  <_  N ) )
13 2z 9075 . . . . . . . . . . . . 13  |-  2  e.  ZZ
14 zleloe 9094 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N )
) )
1513, 4, 14sylancr 410 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N ) ) )
169, 12, 153bitrd 213 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 2  <  N  \/  2  =  N ) ) )
17 olc 700 . . . . . . . . . . . . . 14  |-  ( 2  <  N  ->  ( N  =  1  \/  2  <  N ) )
18172a1d 23 . . . . . . . . . . . . 13  |-  ( 2  <  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
19 oveq1 5774 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  =  2  ->  ( N  +  1 )  =  ( 2  +  1 ) )
2019oveq1d 5782 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =  2  ->  (
( N  +  1 )  /  2 )  =  ( ( 2  +  1 )  / 
2 ) )
2120eqcoms 2140 . . . . . . . . . . . . . . . . . 18  |-  ( 2  =  N  ->  (
( N  +  1 )  /  2 )  =  ( ( 2  +  1 )  / 
2 ) )
2221adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( N  + 
1 )  /  2
)  =  ( ( 2  +  1 )  /  2 ) )
23 2p1e3 8846 . . . . . . . . . . . . . . . . . 18  |-  ( 2  +  1 )  =  3
2423oveq1i 5777 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  +  1 )  /  2 )  =  ( 3  /  2
)
2522, 24syl6eq 2186 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( N  + 
1 )  /  2
)  =  ( 3  /  2 ) )
2625eleq1d 2206 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  <->  (
3  /  2 )  e.  NN0 ) )
27 3halfnz 9141 . . . . . . . . . . . . . . . 16  |-  -.  (
3  /  2 )  e.  ZZ
28 nn0z 9067 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  /  2 )  e.  NN0  ->  ( 3  /  2 )  e.  ZZ )
2928pm2.24d 611 . . . . . . . . . . . . . . . 16  |-  ( ( 3  /  2 )  e.  NN0  ->  ( -.  ( 3  /  2
)  e.  ZZ  ->  ( N  =  1  \/  2  <  N ) ) )
3027, 29mpi 15 . . . . . . . . . . . . . . 15  |-  ( ( 3  /  2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N ) )
3126, 30syl6bi 162 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) )
3231expcom 115 . . . . . . . . . . . . 13  |-  ( 2  =  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
3318, 32jaoi 705 . . . . . . . . . . . 12  |-  ( ( 2  <  N  \/  2  =  N )  ->  ( N  e.  NN0  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
3433com12 30 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ( 2  <  N  \/  2  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
3516, 34sylbid 149 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 1  <  N  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
3635com12 30 . . . . . . . . 9  |-  ( 1  <  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
37 orc 701 . . . . . . . . . . 11  |-  ( N  =  1  ->  ( N  =  1  \/  2  <  N ) )
3837eqcoms 2140 . . . . . . . . . 10  |-  ( 1  =  N  ->  ( N  =  1  \/  2  <  N ) )
39382a1d 23 . . . . . . . . 9  |-  ( 1  =  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
4036, 39jaoi 705 . . . . . . . 8  |-  ( ( 1  <  N  \/  1  =  N )  ->  ( N  e.  NN0  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
4140com12 30 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( 1  <  N  \/  1  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
426, 41sylbid 149 . . . . . 6  |-  ( N  e.  NN0  ->  ( 1  <_  N  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
4342imp 123 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N )  -> 
( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) )
442, 43sylbi 120 . . . 4  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) )
45 oveq1 5774 . . . . . . . 8  |-  ( N  =  0  ->  ( N  +  1 )  =  ( 0  +  1 ) )
46 0p1e1 8827 . . . . . . . 8  |-  ( 0  +  1 )  =  1
4745, 46syl6eq 2186 . . . . . . 7  |-  ( N  =  0  ->  ( N  +  1 )  =  1 )
4847oveq1d 5782 . . . . . 6  |-  ( N  =  0  ->  (
( N  +  1 )  /  2 )  =  ( 1  / 
2 ) )
4948eleq1d 2206 . . . . 5  |-  ( N  =  0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  <->  ( 1  /  2 )  e. 
NN0 ) )
50 halfnz 9140 . . . . . 6  |-  -.  (
1  /  2 )  e.  ZZ
51 nn0z 9067 . . . . . . 7  |-  ( ( 1  /  2 )  e.  NN0  ->  ( 1  /  2 )  e.  ZZ )
5251pm2.24d 611 . . . . . 6  |-  ( ( 1  /  2 )  e.  NN0  ->  ( -.  ( 1  /  2
)  e.  ZZ  ->  ( N  =  1  \/  2  <  N ) ) )
5350, 52mpi 15 . . . . 5  |-  ( ( 1  /  2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N ) )
5449, 53syl6bi 162 . . . 4  |-  ( N  =  0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) )
5544, 54jaoi 705 . . 3  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( ( ( N  +  1 )  /  2 )  e. 
NN0  ->  ( N  =  1  \/  2  < 
N ) ) )
561, 55sylbi 120 . 2  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) )
5756imp 123 1  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   0cc0 7613   1c1 7614    + caddc 7616    < clt 7793    <_ cle 7794    / cdiv 8425   NNcn 8713   2c2 8764   3c3 8765   NN0cn0 8970   ZZcz 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048
This theorem is referenced by:  nno  11592  nn0o  11593
  Copyright terms: Public domain W3C validator