ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthd Unicode version

Theorem nn0opthd 10461
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers  A and  B by  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3531 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1  |-  ( ph  ->  A  e.  NN0 )
nn0opthd.2  |-  ( ph  ->  B  e.  NN0 )
nn0opthd.3  |-  ( ph  ->  C  e.  NN0 )
nn0opthd.4  |-  ( ph  ->  D  e.  NN0 )
Assertion
Ref Expression
nn0opthd  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <-> 
( A  =  C  /\  B  =  D ) ) )

Proof of Theorem nn0opthd
StepHypRef Expression
1 nn0opthd.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  NN0 )
2 nn0opthd.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  NN0 )
3 nn0opthd.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  NN0 )
4 nn0opthd.4 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  NN0 )
53, 4nn0addcld 9027 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  +  D
)  e.  NN0 )
61, 2, 5, 4nn0opthlem2d 10460 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  +  B )  <  ( C  +  D )  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  =/=  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) ) )
76imp 123 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( A  +  B )  <  ( C  +  D )
)  ->  ( (
( C  +  D
)  x.  ( C  +  D ) )  +  D )  =/=  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
) )
87necomd 2392 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  +  B )  <  ( C  +  D )
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )
98ex 114 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  +  B )  <  ( C  +  D )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =/=  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) ) )
101, 2nn0addcld 9027 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  B
)  e.  NN0 )
113, 4, 10, 2nn0opthlem2d 10460 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  +  D )  <  ( A  +  B )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =/=  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) ) )
129, 11jaod 706 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A  +  B )  < 
( C  +  D
)  \/  ( C  +  D )  < 
( A  +  B
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) ) )
1310nn0red 9024 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  B
)  e.  RR )
145nn0red 9024 . . . . . . . . . . 11  |-  ( ph  ->  ( C  +  D
)  e.  RR )
15 reaplt 8343 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  e.  RR  /\  ( C  +  D
)  e.  RR )  ->  ( ( A  +  B ) #  ( C  +  D )  <-> 
( ( A  +  B )  <  ( C  +  D )  \/  ( C  +  D
)  <  ( A  +  B ) ) ) )
1613, 14, 15syl2anc 408 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B ) #  ( C  +  D )  <->  ( ( A  +  B )  <  ( C  +  D
)  \/  ( C  +  D )  < 
( A  +  B
) ) ) )
1710, 10nn0mulcld 9028 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  +  B )  x.  ( A  +  B )
)  e.  NN0 )
1817, 2nn0addcld 9027 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  NN0 )
1918nn0zd 9164 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  ZZ )
205, 5nn0mulcld 9028 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  +  D )  x.  ( C  +  D )
)  e.  NN0 )
2120, 4nn0addcld 9027 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  NN0 )
2221nn0zd 9164 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  ZZ )
23 zapne 9118 . . . . . . . . . . 11  |-  ( ( ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  ZZ  /\  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  ZZ )  ->  ( ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <-> 
( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =/=  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) ) )
2419, 22, 23syl2anc 408 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D )  <->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) ) )
2512, 16, 243imtr4d 202 . . . . . . . . 9  |-  ( ph  ->  ( ( A  +  B ) #  ( C  +  D )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) ) )
2625con3d 620 . . . . . . . 8  |-  ( ph  ->  ( -.  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  ->  -.  ( A  +  B ) #  ( C  +  D ) ) )
2718nn0cnd 9025 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  CC )
2821nn0cnd 9025 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  CC )
29 apti 8377 . . . . . . . . 9  |-  ( ( ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  CC  /\  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  CC )  ->  ( ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  <->  -.  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D ) ) )
3027, 28, 29syl2anc 408 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <->  -.  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
) #  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) ) )
3110nn0cnd 9025 . . . . . . . . 9  |-  ( ph  ->  ( A  +  B
)  e.  CC )
325nn0cnd 9025 . . . . . . . . 9  |-  ( ph  ->  ( C  +  D
)  e.  CC )
33 apti 8377 . . . . . . . . 9  |-  ( ( ( A  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC )  ->  ( ( A  +  B )  =  ( C  +  D
)  <->  -.  ( A  +  B ) #  ( C  +  D ) ) )
3431, 32, 33syl2anc 408 . . . . . . . 8  |-  ( ph  ->  ( ( A  +  B )  =  ( C  +  D )  <->  -.  ( A  +  B
) #  ( C  +  D ) ) )
3526, 30, 343imtr4d 202 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  ->  ( A  +  B )  =  ( C  +  D ) ) )
3635imp 123 . . . . . 6  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( A  +  B )  =  ( C  +  D ) )
37 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
3836, 36oveq12d 5785 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( A  +  B
)  x.  ( A  +  B ) )  =  ( ( C  +  D )  x.  ( C  +  D
) ) )
3938oveq1d 5782 . . . . . . . . 9  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  D )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
4037, 39eqtr4d 2173 . . . . . . . 8  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( A  +  B )  x.  ( A  +  B ) )  +  D ) )
4131, 31mulcld 7779 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B )  x.  ( A  +  B )
)  e.  CC )
422nn0cnd 9025 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
434nn0cnd 9025 . . . . . . . . . 10  |-  ( ph  ->  D  e.  CC )
4441, 42, 43addcand 7939 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( A  +  B )  x.  ( A  +  B )
)  +  D )  <-> 
B  =  D ) )
4544adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  D )  <->  B  =  D ) )
4640, 45mpbid 146 . . . . . . 7  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  B  =  D )
4746oveq2d 5783 . . . . . 6  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( C  +  B )  =  ( C  +  D ) )
4836, 47eqtr4d 2173 . . . . 5  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( A  +  B )  =  ( C  +  B ) )
491nn0cnd 9025 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
503nn0cnd 9025 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
5149, 50, 42addcan2d 7940 . . . . . 6  |-  ( ph  ->  ( ( A  +  B )  =  ( C  +  B )  <-> 
A  =  C ) )
5251adantr 274 . . . . 5  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( A  +  B
)  =  ( C  +  B )  <->  A  =  C ) )
5348, 52mpbid 146 . . . 4  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  A  =  C )
5453, 46jca 304 . . 3  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( A  =  C  /\  B  =  D )
)
5554ex 114 . 2  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  ->  ( A  =  C  /\  B  =  D ) ) )
56 oveq12 5776 . . . 4  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  +  B
)  =  ( C  +  D ) )
5756, 56oveq12d 5785 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( C  +  D )  x.  ( C  +  D ) ) )
58 simpr 109 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  B  =  D )
5957, 58oveq12d 5785 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) )
6055, 59impbid1 141 1  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <-> 
( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480    =/= wne 2306   class class class wbr 3924  (class class class)co 5767   CCcc 7611   RRcr 7612    + caddc 7616    x. cmul 7618    < clt 7793   # cap 8336   NN0cn0 8970   ZZcz 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-seqfrec 10212  df-exp 10286
This theorem is referenced by:  nn0opth2d  10462
  Copyright terms: Public domain W3C validator