ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0seqcvgd Unicode version

Theorem nn0seqcvgd 11649
Description: A strictly-decreasing nonnegative integer sequence with initial term  N reaches zero by the  N th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
nn0seqcvgd.1  |-  ( ph  ->  F : NN0 --> NN0 )
nn0seqcvgd.2  |-  ( ph  ->  N  =  ( F `
 0 ) )
nn0seqcvgd.3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  =/=  0  ->  ( F `  ( k  +  1 ) )  <  ( F `  k ) ) )
Assertion
Ref Expression
nn0seqcvgd  |-  ( ph  ->  ( F `  N
)  =  0 )
Distinct variable groups:    k, F    k, N    ph, k

Proof of Theorem nn0seqcvgd
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 nn0seqcvgd.2 . . . . . 6  |-  ( ph  ->  N  =  ( F `
 0 ) )
2 nn0seqcvgd.1 . . . . . . 7  |-  ( ph  ->  F : NN0 --> NN0 )
3 0nn0 8960 . . . . . . 7  |-  0  e.  NN0
4 ffvelrn 5521 . . . . . . 7  |-  ( ( F : NN0 --> NN0  /\  0  e.  NN0 )  -> 
( F `  0
)  e.  NN0 )
52, 3, 4sylancl 409 . . . . . 6  |-  ( ph  ->  ( F `  0
)  e.  NN0 )
61, 5eqeltrd 2194 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
76nn0red 8999 . . . . . 6  |-  ( ph  ->  N  e.  RR )
87leidd 8244 . . . . 5  |-  ( ph  ->  N  <_  N )
9 fveq2 5389 . . . . . . . 8  |-  ( m  =  0  ->  ( F `  m )  =  ( F ` 
0 ) )
10 oveq2 5750 . . . . . . . 8  |-  ( m  =  0  ->  ( N  -  m )  =  ( N  - 
0 ) )
119, 10breq12d 3912 . . . . . . 7  |-  ( m  =  0  ->  (
( F `  m
)  <_  ( N  -  m )  <->  ( F `  0 )  <_ 
( N  -  0 ) ) )
1211imbi2d 229 . . . . . 6  |-  ( m  =  0  ->  (
( ph  ->  ( F `
 m )  <_ 
( N  -  m
) )  <->  ( ph  ->  ( F `  0
)  <_  ( N  -  0 ) ) ) )
13 fveq2 5389 . . . . . . . 8  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
14 oveq2 5750 . . . . . . . 8  |-  ( m  =  k  ->  ( N  -  m )  =  ( N  -  k ) )
1513, 14breq12d 3912 . . . . . . 7  |-  ( m  =  k  ->  (
( F `  m
)  <_  ( N  -  m )  <->  ( F `  k )  <_  ( N  -  k )
) )
1615imbi2d 229 . . . . . 6  |-  ( m  =  k  ->  (
( ph  ->  ( F `
 m )  <_ 
( N  -  m
) )  <->  ( ph  ->  ( F `  k
)  <_  ( N  -  k ) ) ) )
17 fveq2 5389 . . . . . . . 8  |-  ( m  =  ( k  +  1 )  ->  ( F `  m )  =  ( F `  ( k  +  1 ) ) )
18 oveq2 5750 . . . . . . . 8  |-  ( m  =  ( k  +  1 )  ->  ( N  -  m )  =  ( N  -  ( k  +  1 ) ) )
1917, 18breq12d 3912 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  (
( F `  m
)  <_  ( N  -  m )  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
2019imbi2d 229 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 m )  <_ 
( N  -  m
) )  <->  ( ph  ->  ( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) ) )
21 fveq2 5389 . . . . . . . 8  |-  ( m  =  N  ->  ( F `  m )  =  ( F `  N ) )
22 oveq2 5750 . . . . . . . 8  |-  ( m  =  N  ->  ( N  -  m )  =  ( N  -  N ) )
2321, 22breq12d 3912 . . . . . . 7  |-  ( m  =  N  ->  (
( F `  m
)  <_  ( N  -  m )  <->  ( F `  N )  <_  ( N  -  N )
) )
2423imbi2d 229 . . . . . 6  |-  ( m  =  N  ->  (
( ph  ->  ( F `
 m )  <_ 
( N  -  m
) )  <->  ( ph  ->  ( F `  N
)  <_  ( N  -  N ) ) ) )
251, 8eqbrtrrd 3922 . . . . . . . 8  |-  ( ph  ->  ( F `  0
)  <_  N )
267recnd 7762 . . . . . . . . 9  |-  ( ph  ->  N  e.  CC )
2726subid1d 8030 . . . . . . . 8  |-  ( ph  ->  ( N  -  0 )  =  N )
2825, 27breqtrrd 3926 . . . . . . 7  |-  ( ph  ->  ( F `  0
)  <_  ( N  -  0 ) )
2928a1i 9 . . . . . 6  |-  ( N  e.  NN0  ->  ( ph  ->  ( F `  0
)  <_  ( N  -  0 ) ) )
30 nn0re 8954 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  RR )
31 posdif 8185 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  RR  /\  N  e.  RR )  ->  ( k  <  N  <->  0  <  ( N  -  k ) ) )
3230, 7, 31syl2anr 288 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  <  N  <->  0  <  ( N  -  k )
) )
3332adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( k  <  N  <->  0  <  ( N  -  k ) ) )
34 breq1 3902 . . . . . . . . . . . . . . . 16  |-  ( ( F `  ( k  +  1 ) )  =  0  ->  (
( F `  (
k  +  1 ) )  <  ( N  -  k )  <->  0  <  ( N  -  k ) ) )
3534adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( ( F `  ( k  +  1 ) )  <  ( N  -  k )  <->  0  <  ( N  -  k ) ) )
36 peano2nn0 8985 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
37 ffvelrn 5521 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : NN0 --> NN0  /\  ( k  +  1 )  e.  NN0 )  ->  ( F `  (
k  +  1 ) )  e.  NN0 )
382, 36, 37syl2an 287 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( k  +  1 ) )  e.  NN0 )
3938nn0zd 9139 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( k  +  1 ) )  e.  ZZ )
406nn0zd 9139 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  ZZ )
41 nn0z 9042 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  k  e.  ZZ )
42 zsubcl 9063 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ )  ->  ( N  -  k
)  e.  ZZ )
4340, 41, 42syl2an 287 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( N  -  k )  e.  ZZ )
44 zltlem1 9079 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F `  (
k  +  1 ) )  e.  ZZ  /\  ( N  -  k
)  e.  ZZ )  ->  ( ( F `
 ( k  +  1 ) )  < 
( N  -  k
)  <->  ( F `  ( k  +  1 ) )  <_  (
( N  -  k
)  -  1 ) ) )
4539, 43, 44syl2anc 408 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  <  ( N  -  k )  <->  ( F `  ( k  +  1 ) )  <_  (
( N  -  k
)  -  1 ) ) )
46 nn0cn 8955 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  k  e.  CC )
47 ax-1cn 7681 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
48 subsub4 7963 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( N  -  k
)  -  1 )  =  ( N  -  ( k  +  1 ) ) )
4947, 48mp3an3 1289 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  CC  /\  k  e.  CC )  ->  ( ( N  -  k )  -  1 )  =  ( N  -  ( k  +  1 ) ) )
5026, 46, 49syl2an 287 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( N  -  k )  -  1 )  =  ( N  -  (
k  +  1 ) ) )
5150breq2d 3911 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  <_  ( ( N  -  k )  - 
1 )  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
5245, 51bitrd 187 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  <  ( N  -  k )  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
5352adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( ( F `  ( k  +  1 ) )  <  ( N  -  k )  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
5433, 35, 533bitr2d 215 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( k  <  N  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
5554biimpa 294 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  /\  k  <  N )  -> 
( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) )
5655an32s 542 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) )
5756a1d 22 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( ( F `  k )  <_  ( N  -  k )  ->  ( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
58 nn0seqcvgd.3 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  =/=  0  ->  ( F `  ( k  +  1 ) )  <  ( F `  k ) ) )
5938nn0red 8999 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( k  +  1 ) )  e.  RR )
602ffvelrnda 5523 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  NN0 )
6160nn0red 8999 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR )
6243zred 9141 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( N  -  k )  e.  RR )
63 ltletr 7821 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  (
k  +  1 ) )  e.  RR  /\  ( F `  k )  e.  RR  /\  ( N  -  k )  e.  RR )  ->  (
( ( F `  ( k  +  1 ) )  <  ( F `  k )  /\  ( F `  k
)  <_  ( N  -  k ) )  ->  ( F `  ( k  +  1 ) )  <  ( N  -  k )
) )
6459, 61, 62, 63syl3anc 1201 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( F `  (
k  +  1 ) )  <  ( F `
 k )  /\  ( F `  k )  <_  ( N  -  k ) )  -> 
( F `  (
k  +  1 ) )  <  ( N  -  k ) ) )
6564, 52sylibd 148 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( F `  (
k  +  1 ) )  <  ( F `
 k )  /\  ( F `  k )  <_  ( N  -  k ) )  -> 
( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
6658, 65syland 291 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( F `  (
k  +  1 ) )  =/=  0  /\  ( F `  k
)  <_  ( N  -  k ) )  ->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
6766adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  (
( ( F `  ( k  +  1 ) )  =/=  0  /\  ( F `  k
)  <_  ( N  -  k ) )  ->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
6867expdimp 257 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  /\  ( F `  ( k  +  1 ) )  =/=  0 )  -> 
( ( F `  k )  <_  ( N  -  k )  ->  ( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
6939adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  ( F `  ( k  +  1 ) )  e.  ZZ )
70 0zd 9034 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  0  e.  ZZ )
71 zdceq 9094 . . . . . . . . . . . . 13  |-  ( ( ( F `  (
k  +  1 ) )  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( F `  ( k  +  1 ) )  =  0 )
7269, 70, 71syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  -> DECID  ( F `  (
k  +  1 ) )  =  0 )
73 dcne 2296 . . . . . . . . . . . 12  |-  (DECID  ( F `
 ( k  +  1 ) )  =  0  <->  ( ( F `
 ( k  +  1 ) )  =  0  \/  ( F `
 ( k  +  1 ) )  =/=  0 ) )
7472, 73sylib 121 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  (
( F `  (
k  +  1 ) )  =  0  \/  ( F `  (
k  +  1 ) )  =/=  0 ) )
7557, 68, 74mpjaodan 772 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  (
( F `  k
)  <_  ( N  -  k )  -> 
( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
7675anasss 396 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN0  /\  k  < 
N ) )  -> 
( ( F `  k )  <_  ( N  -  k )  ->  ( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
7776expcom 115 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  k  <  N )  -> 
( ph  ->  ( ( F `  k )  <_  ( N  -  k )  ->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) ) )
7877a2d 26 . . . . . . 7  |-  ( ( k  e.  NN0  /\  k  <  N )  -> 
( ( ph  ->  ( F `  k )  <_  ( N  -  k ) )  -> 
( ph  ->  ( F `
 ( k  +  1 ) )  <_ 
( N  -  (
k  +  1 ) ) ) ) )
79783adant1 984 . . . . . 6  |-  ( ( N  e.  NN0  /\  k  e.  NN0  /\  k  <  N )  ->  (
( ph  ->  ( F `
 k )  <_ 
( N  -  k
) )  ->  ( ph  ->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) ) )
8012, 16, 20, 24, 29, 79fnn0ind 9135 . . . . 5  |-  ( ( N  e.  NN0  /\  N  e.  NN0  /\  N  <_  N )  ->  ( ph  ->  ( F `  N )  <_  ( N  -  N )
) )
816, 6, 8, 80syl3anc 1201 . . . 4  |-  ( ph  ->  ( ph  ->  ( F `  N )  <_  ( N  -  N
) ) )
8281pm2.43i 49 . . 3  |-  ( ph  ->  ( F `  N
)  <_  ( N  -  N ) )
8326subidd 8029 . . 3  |-  ( ph  ->  ( N  -  N
)  =  0 )
8482, 83breqtrd 3924 . 2  |-  ( ph  ->  ( F `  N
)  <_  0 )
852, 6ffvelrnd 5524 . . 3  |-  ( ph  ->  ( F `  N
)  e.  NN0 )
8685nn0ge0d 9001 . 2  |-  ( ph  ->  0  <_  ( F `  N ) )
8785nn0red 8999 . . 3  |-  ( ph  ->  ( F `  N
)  e.  RR )
88 0re 7734 . . 3  |-  0  e.  RR
89 letri3 7813 . . 3  |-  ( ( ( F `  N
)  e.  RR  /\  0  e.  RR )  ->  ( ( F `  N )  =  0  <-> 
( ( F `  N )  <_  0  /\  0  <_  ( F `
 N ) ) ) )
9087, 88, 89sylancl 409 . 2  |-  ( ph  ->  ( ( F `  N )  =  0  <-> 
( ( F `  N )  <_  0  /\  0  <_  ( F `
 N ) ) ) )
9184, 86, 90mpbir2and 913 1  |-  ( ph  ->  ( F `  N
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 682  DECID wdc 804    = wceq 1316    e. wcel 1465    =/= wne 2285   class class class wbr 3899   -->wf 5089   ` cfv 5093  (class class class)co 5742   CCcc 7586   RRcr 7587   0cc0 7588   1c1 7589    + caddc 7591    < clt 7768    <_ cle 7769    - cmin 7901   NN0cn0 8945   ZZcz 9022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023
This theorem is referenced by:  algcvg  11656
  Copyright terms: Public domain W3C validator