ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0suc Unicode version

Theorem nn0suc 4488
Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
nn0suc  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem nn0suc
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2124 . . 3  |-  ( y  =  (/)  ->  ( y  =  (/)  <->  (/)  =  (/) ) )
2 eqeq1 2124 . . . 4  |-  ( y  =  (/)  ->  ( y  =  suc  x  <->  (/)  =  suc  x ) )
32rexbidv 2415 . . 3  |-  ( y  =  (/)  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  (/)  =  suc  x
) )
41, 3orbi12d 767 . 2  |-  ( y  =  (/)  ->  ( ( y  =  (/)  \/  E. x  e.  om  y  =  suc  x )  <->  ( (/)  =  (/)  \/ 
E. x  e.  om  (/)  =  suc  x ) ) )
5 eqeq1 2124 . . 3  |-  ( y  =  z  ->  (
y  =  (/)  <->  z  =  (/) ) )
6 eqeq1 2124 . . . 4  |-  ( y  =  z  ->  (
y  =  suc  x  <->  z  =  suc  x ) )
76rexbidv 2415 . . 3  |-  ( y  =  z  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  z  =  suc  x ) )
85, 7orbi12d 767 . 2  |-  ( y  =  z  ->  (
( y  =  (/)  \/ 
E. x  e.  om  y  =  suc  x )  <-> 
( z  =  (/)  \/ 
E. x  e.  om  z  =  suc  x ) ) )
9 eqeq1 2124 . . 3  |-  ( y  =  suc  z  -> 
( y  =  (/)  <->  suc  z  =  (/) ) )
10 eqeq1 2124 . . . 4  |-  ( y  =  suc  z  -> 
( y  =  suc  x 
<->  suc  z  =  suc  x ) )
1110rexbidv 2415 . . 3  |-  ( y  =  suc  z  -> 
( E. x  e. 
om  y  =  suc  x 
<->  E. x  e.  om  suc  z  =  suc  x ) )
129, 11orbi12d 767 . 2  |-  ( y  =  suc  z  -> 
( ( y  =  (/)  \/  E. x  e. 
om  y  =  suc  x )  <->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) ) )
13 eqeq1 2124 . . 3  |-  ( y  =  A  ->  (
y  =  (/)  <->  A  =  (/) ) )
14 eqeq1 2124 . . . 4  |-  ( y  =  A  ->  (
y  =  suc  x  <->  A  =  suc  x ) )
1514rexbidv 2415 . . 3  |-  ( y  =  A  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  A  =  suc  x ) )
1613, 15orbi12d 767 . 2  |-  ( y  =  A  ->  (
( y  =  (/)  \/ 
E. x  e.  om  y  =  suc  x )  <-> 
( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) ) )
17 eqid 2117 . . 3  |-  (/)  =  (/)
1817orci 705 . 2  |-  ( (/)  =  (/)  \/  E. x  e.  om  (/)  =  suc  x
)
19 eqid 2117 . . . . 5  |-  suc  z  =  suc  z
20 suceq 4294 . . . . . . 7  |-  ( x  =  z  ->  suc  x  =  suc  z )
2120eqeq2d 2129 . . . . . 6  |-  ( x  =  z  ->  ( suc  z  =  suc  x 
<->  suc  z  =  suc  z ) )
2221rspcev 2763 . . . . 5  |-  ( ( z  e.  om  /\  suc  z  =  suc  z )  ->  E. x  e.  om  suc  z  =  suc  x )
2319, 22mpan2 421 . . . 4  |-  ( z  e.  om  ->  E. x  e.  om  suc  z  =  suc  x )
2423olcd 708 . . 3  |-  ( z  e.  om  ->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) )
2524a1d 22 . 2  |-  ( z  e.  om  ->  (
( z  =  (/)  \/ 
E. x  e.  om  z  =  suc  x )  ->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) ) )
264, 8, 12, 16, 18, 25finds 4484 1  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 682    = wceq 1316    e. wcel 1465   E.wrex 2394   (/)c0 3333   suc csuc 4257   omcom 4474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-uni 3707  df-int 3742  df-suc 4263  df-iom 4475
This theorem is referenced by:  nnsuc  4499  nnpredcl  4506  frecabcl  6264  nnsucuniel  6359  nneneq  6719  phpm  6727  dif1enen  6742  fin0  6747  fin0or  6748  diffisn  6755
  Copyright terms: Public domain W3C validator