ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0supp Unicode version

Theorem nn0supp 9022
Description: Two ways to write the support of a function on  NN0. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
nn0supp  |-  ( F : I --> NN0  ->  ( `' F " ( _V 
\  { 0 } ) )  =  ( `' F " NN ) )

Proof of Theorem nn0supp
StepHypRef Expression
1 dfn2 8983 . . . 4  |-  NN  =  ( NN0  \  { 0 } )
2 invdif 3313 . . . 4  |-  ( NN0 
i^i  ( _V  \  { 0 } ) )  =  ( NN0  \  { 0 } )
31, 2eqtr4i 2161 . . 3  |-  NN  =  ( NN0  i^i  ( _V 
\  { 0 } ) )
43imaeq2i 4874 . 2  |-  ( `' F " NN )  =  ( `' F " ( NN0  i^i  ( _V  \  { 0 } ) ) )
5 ffun 5270 . . . 4  |-  ( F : I --> NN0  ->  Fun 
F )
6 inpreima 5539 . . . 4  |-  ( Fun 
F  ->  ( `' F " ( NN0  i^i  ( _V  \  { 0 } ) ) )  =  ( ( `' F " NN0 )  i^i  ( `' F "
( _V  \  {
0 } ) ) ) )
75, 6syl 14 . . 3  |-  ( F : I --> NN0  ->  ( `' F " ( NN0 
i^i  ( _V  \  { 0 } ) ) )  =  ( ( `' F " NN0 )  i^i  ( `' F " ( _V 
\  { 0 } ) ) ) )
8 cnvimass 4897 . . . . 5  |-  ( `' F " ( _V 
\  { 0 } ) )  C_  dom  F
9 fdm 5273 . . . . . 6  |-  ( F : I --> NN0  ->  dom 
F  =  I )
10 fimacnv 5542 . . . . . 6  |-  ( F : I --> NN0  ->  ( `' F " NN0 )  =  I )
119, 10eqtr4d 2173 . . . . 5  |-  ( F : I --> NN0  ->  dom 
F  =  ( `' F " NN0 )
)
128, 11sseqtrid 3142 . . . 4  |-  ( F : I --> NN0  ->  ( `' F " ( _V 
\  { 0 } ) )  C_  ( `' F " NN0 )
)
13 sseqin2 3290 . . . 4  |-  ( ( `' F " ( _V 
\  { 0 } ) )  C_  ( `' F " NN0 )  <->  ( ( `' F " NN0 )  i^i  ( `' F " ( _V 
\  { 0 } ) ) )  =  ( `' F "
( _V  \  {
0 } ) ) )
1412, 13sylib 121 . . 3  |-  ( F : I --> NN0  ->  ( ( `' F " NN0 )  i^i  ( `' F " ( _V 
\  { 0 } ) ) )  =  ( `' F "
( _V  \  {
0 } ) ) )
157, 14eqtrd 2170 . 2  |-  ( F : I --> NN0  ->  ( `' F " ( NN0 
i^i  ( _V  \  { 0 } ) ) )  =  ( `' F " ( _V 
\  { 0 } ) ) )
164, 15syl5req 2183 1  |-  ( F : I --> NN0  ->  ( `' F " ( _V 
\  { 0 } ) )  =  ( `' F " NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331   _Vcvv 2681    \ cdif 3063    i^i cin 3065    C_ wss 3066   {csn 3522   `'ccnv 4533   dom cdm 4534   "cima 4537   Fun wfun 5112   -->wf 5114   0cc0 7613   NNcn 8713   NN0cn0 8970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1re 7707  ax-addrcl 7710  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-pre-ltirr 7725  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-inn 8714  df-n0 8971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator