ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaword Unicode version

Theorem nnaword 6115
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaword  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )

Proof of Theorem nnaword
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5547 . . . . . . 7  |-  ( x  =  C  ->  (
x  +o  A )  =  ( C  +o  A ) )
2 oveq1 5547 . . . . . . 7  |-  ( x  =  C  ->  (
x  +o  B )  =  ( C  +o  B ) )
31, 2sseq12d 3002 . . . . . 6  |-  ( x  =  C  ->  (
( x  +o  A
)  C_  ( x  +o  B )  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )
43bibi2d 225 . . . . 5  |-  ( x  =  C  ->  (
( A  C_  B  <->  ( x  +o  A ) 
C_  ( x  +o  B ) )  <->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) ) )
54imbi2d 223 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( x  +o  A )  C_  (
x  +o  B ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) ) ) )
6 oveq1 5547 . . . . . . 7  |-  ( x  =  (/)  ->  ( x  +o  A )  =  ( (/)  +o  A
) )
7 oveq1 5547 . . . . . . 7  |-  ( x  =  (/)  ->  ( x  +o  B )  =  ( (/)  +o  B
) )
86, 7sseq12d 3002 . . . . . 6  |-  ( x  =  (/)  ->  ( ( x  +o  A ) 
C_  ( x  +o  B )  <->  ( (/)  +o  A
)  C_  ( (/)  +o  B
) ) )
98bibi2d 225 . . . . 5  |-  ( x  =  (/)  ->  ( ( A  C_  B  <->  ( x  +o  A )  C_  (
x  +o  B ) )  <->  ( A  C_  B 
<->  ( (/)  +o  A
)  C_  ( (/)  +o  B
) ) ) )
10 oveq1 5547 . . . . . . 7  |-  ( x  =  y  ->  (
x  +o  A )  =  ( y  +o  A ) )
11 oveq1 5547 . . . . . . 7  |-  ( x  =  y  ->  (
x  +o  B )  =  ( y  +o  B ) )
1210, 11sseq12d 3002 . . . . . 6  |-  ( x  =  y  ->  (
( x  +o  A
)  C_  ( x  +o  B )  <->  ( y  +o  A )  C_  (
y  +o  B ) ) )
1312bibi2d 225 . . . . 5  |-  ( x  =  y  ->  (
( A  C_  B  <->  ( x  +o  A ) 
C_  ( x  +o  B ) )  <->  ( A  C_  B  <->  ( y  +o  A )  C_  (
y  +o  B ) ) ) )
14 oveq1 5547 . . . . . . 7  |-  ( x  =  suc  y  -> 
( x  +o  A
)  =  ( suc  y  +o  A ) )
15 oveq1 5547 . . . . . . 7  |-  ( x  =  suc  y  -> 
( x  +o  B
)  =  ( suc  y  +o  B ) )
1614, 15sseq12d 3002 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( x  +o  A )  C_  (
x  +o  B )  <-> 
( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) )
1716bibi2d 225 . . . . 5  |-  ( x  =  suc  y  -> 
( ( A  C_  B 
<->  ( x  +o  A
)  C_  ( x  +o  B ) )  <->  ( A  C_  B  <->  ( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) ) )
18 nna0r 6088 . . . . . . . 8  |-  ( A  e.  om  ->  ( (/) 
+o  A )  =  A )
1918eqcomd 2061 . . . . . . 7  |-  ( A  e.  om  ->  A  =  ( (/)  +o  A
) )
2019adantr 265 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  A  =  ( (/)  +o  A ) )
21 nna0r 6088 . . . . . . . 8  |-  ( B  e.  om  ->  ( (/) 
+o  B )  =  B )
2221eqcomd 2061 . . . . . . 7  |-  ( B  e.  om  ->  B  =  ( (/)  +o  B
) )
2322adantl 266 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  B  =  ( (/)  +o  B ) )
2420, 23sseq12d 3002 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  (
(/)  +o  A )  C_  ( (/)  +o  B
) ) )
25 nnacl 6090 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  A  e.  om )  ->  ( y  +o  A
)  e.  om )
26253adant3 935 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
y  +o  A )  e.  om )
27 nnacl 6090 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( y  +o  B
)  e.  om )
28273adant2 934 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
y  +o  B )  e.  om )
29 nnsucsssuc 6102 . . . . . . . . . 10  |-  ( ( ( y  +o  A
)  e.  om  /\  ( y  +o  B
)  e.  om )  ->  ( ( y  +o  A )  C_  (
y  +o  B )  <->  suc  ( y  +o  A
)  C_  suc  ( y  +o  B ) ) )
3026, 28, 29syl2anc 397 . . . . . . . . 9  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( y  +o  A
)  C_  ( y  +o  B )  <->  suc  ( y  +o  A )  C_  suc  ( y  +o  B
) ) )
31 nnasuc 6086 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
32 peano2 4346 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  suc  y  e.  om )
33 nnacom 6094 . . . . . . . . . . . . . 14  |-  ( ( A  e.  om  /\  suc  y  e.  om )  ->  ( A  +o  suc  y )  =  ( suc  y  +o  A
) )
3432, 33sylan2 274 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  ( suc  y  +o  A
) )
35 nnacom 6094 . . . . . . . . . . . . . 14  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  y
)  =  ( y  +o  A ) )
36 suceq 4167 . . . . . . . . . . . . . 14  |-  ( ( A  +o  y )  =  ( y  +o  A )  ->  suc  ( A  +o  y
)  =  suc  (
y  +o  A ) )
3735, 36syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  suc  ( A  +o  y )  =  suc  ( y  +o  A
) )
3831, 34, 373eqtr3rd 2097 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  y  e.  om )  ->  suc  ( y  +o  A )  =  ( suc  y  +o  A
) )
3938ancoms 259 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  A  e.  om )  ->  suc  ( y  +o  A )  =  ( suc  y  +o  A
) )
40393adant3 935 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  suc  ( y  +o  A
)  =  ( suc  y  +o  A ) )
41 nnasuc 6086 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
42 nnacom 6094 . . . . . . . . . . . . . 14  |-  ( ( B  e.  om  /\  suc  y  e.  om )  ->  ( B  +o  suc  y )  =  ( suc  y  +o  B
) )
4332, 42sylan2 274 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  ( suc  y  +o  B
) )
44 nnacom 6094 . . . . . . . . . . . . . 14  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  =  ( y  +o  B ) )
45 suceq 4167 . . . . . . . . . . . . . 14  |-  ( ( B  +o  y )  =  ( y  +o  B )  ->  suc  ( B  +o  y
)  =  suc  (
y  +o  B ) )
4644, 45syl 14 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  suc  ( B  +o  y )  =  suc  ( y  +o  B
) )
4741, 43, 463eqtr3rd 2097 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  y  e.  om )  ->  suc  ( y  +o  B )  =  ( suc  y  +o  B
) )
4847ancoms 259 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  B  e.  om )  ->  suc  ( y  +o  B )  =  ( suc  y  +o  B
) )
49483adant2 934 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  suc  ( y  +o  B
)  =  ( suc  y  +o  B ) )
5040, 49sseq12d 3002 . . . . . . . . 9  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  ( suc  ( y  +o  A
)  C_  suc  ( y  +o  B )  <->  ( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) )
5130, 50bitrd 181 . . . . . . . 8  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( y  +o  A
)  C_  ( y  +o  B )  <->  ( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) )
5251bibi2d 225 . . . . . . 7  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( A  C_  B  <->  ( y  +o  A ) 
C_  ( y  +o  B ) )  <->  ( A  C_  B  <->  ( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) ) )
5352biimpd 136 . . . . . 6  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( A  C_  B  <->  ( y  +o  A ) 
C_  ( y  +o  B ) )  -> 
( A  C_  B  <->  ( suc  y  +o  A
)  C_  ( suc  y  +o  B ) ) ) )
54533expib 1118 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  C_  B 
<->  ( y  +o  A
)  C_  ( y  +o  B ) )  -> 
( A  C_  B  <->  ( suc  y  +o  A
)  C_  ( suc  y  +o  B ) ) ) ) )
559, 13, 17, 24, 54finds2 4352 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( x  +o  A ) 
C_  ( x  +o  B ) ) ) )
565, 55vtoclga 2636 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A ) 
C_  ( C  +o  B ) ) ) )
5756impcom 120 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  C  e.  om )  ->  ( A  C_  B 
<->  ( C  +o  A
)  C_  ( C  +o  B ) ) )
58573impa 1110 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259    e. wcel 1409    C_ wss 2945   (/)c0 3252   suc csuc 4130   omcom 4341  (class class class)co 5540    +o coa 6029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-oadd 6036
This theorem is referenced by:  nnacan  6116  nnawordi  6119
  Copyright terms: Public domain W3C validator