![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nncn | Unicode version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nncn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 8111 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 2996 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-cnex 7129 ax-resscn 7130 ax-1re 7132 ax-addrcl 7135 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-v 2604 df-in 2980 df-ss 2987 df-int 3645 df-inn 8107 |
This theorem is referenced by: nn1m1nn 8124 nn1suc 8125 nnaddcl 8126 nnmulcl 8127 nnsub 8144 nndiv 8146 nndivtr 8147 nnnn0addcl 8385 nn0nnaddcl 8386 elnnnn0 8398 nnnegz 8435 zaddcllempos 8469 zaddcllemneg 8471 nnaddm1cl 8493 elz2 8500 zdiv 8516 zdivadd 8517 zdivmul 8518 nneoor 8530 nneo 8531 divfnzn 8787 qmulz 8789 qaddcl 8801 qnegcl 8802 qmulcl 8803 qreccl 8808 nnledivrp 8918 nn0ledivnn 8919 fseq1m1p1 9188 ubmelm1fzo 9312 subfzo0 9328 flqdiv 9403 addmodidr 9455 modfzo0difsn 9477 nn0ennn 9515 expnegap0 9581 expm1t 9601 nnsqcl 9642 nnlesq 9675 facdiv 9762 facndiv 9763 faclbnd 9765 bcn1 9782 bcn2m1 9793 nndivides 10347 modmulconst 10372 dvdsflip 10396 nn0enne 10446 nno 10450 divalgmod 10471 ndvdsadd 10475 modgcd 10526 gcddiv 10552 gcdmultiple 10553 gcdmultiplez 10554 rpmulgcd 10559 rplpwr 10560 sqgcd 10562 lcmgcdlem 10603 qredeq 10622 qredeu 10623 divgcdcoprm0 10627 cncongrcoprm 10632 prmind2 10646 isprm6 10670 sqrt2irr 10685 oddpwdclemodd 10694 |
Copyright terms: Public domain | W3C validator |