Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nncni Unicode version

Theorem nncni 8105
 Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1
Assertion
Ref Expression
nncni

Proof of Theorem nncni
StepHypRef Expression
1 nnre.1 . . 3
21nnrei 8104 . 2
32recni 7182 1
 Colors of variables: wff set class Syntax hints:   wcel 1434  cc 7030  cn 8095 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-cnex 7118  ax-resscn 7119  ax-1re 7121  ax-addrcl 7124 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604  df-in 2980  df-ss 2987  df-int 3639  df-inn 8096 This theorem is referenced by:  9p1e10  8549  numnncl2  8569  dec10p  8589  3dec  9728  4bc2eq6  9787
 Copyright terms: Public domain W3C validator