ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nneneq Unicode version

Theorem nneneq 6719
Description: Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
nneneq  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~~  B  <->  A  =  B ) )

Proof of Theorem nneneq
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3902 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
~~  z  <->  (/)  ~~  z
) )
2 eqeq1 2124 . . . . . 6  |-  ( x  =  (/)  ->  ( x  =  z  <->  (/)  =  z ) )
31, 2imbi12d 233 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  ~~  z  ->  x  =  z )  <->  (
(/)  ~~  z  ->  (/)  =  z ) ) )
43ralbidv 2414 . . . 4  |-  ( x  =  (/)  ->  ( A. z  e.  om  (
x  ~~  z  ->  x  =  z )  <->  A. z  e.  om  ( (/)  ~~  z  -> 
(/)  =  z ) ) )
5 breq1 3902 . . . . . 6  |-  ( x  =  y  ->  (
x  ~~  z  <->  y  ~~  z ) )
6 eqeq1 2124 . . . . . 6  |-  ( x  =  y  ->  (
x  =  z  <->  y  =  z ) )
75, 6imbi12d 233 . . . . 5  |-  ( x  =  y  ->  (
( x  ~~  z  ->  x  =  z )  <-> 
( y  ~~  z  ->  y  =  z ) ) )
87ralbidv 2414 . . . 4  |-  ( x  =  y  ->  ( A. z  e.  om  ( x  ~~  z  ->  x  =  z )  <->  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) ) )
9 breq1 3902 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  ~~  z  <->  suc  y  ~~  z ) )
10 eqeq1 2124 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  =  z  <->  suc  y  =  z
) )
119, 10imbi12d 233 . . . . 5  |-  ( x  =  suc  y  -> 
( ( x  ~~  z  ->  x  =  z )  <->  ( suc  y  ~~  z  ->  suc  y  =  z ) ) )
1211ralbidv 2414 . . . 4  |-  ( x  =  suc  y  -> 
( A. z  e. 
om  ( x  ~~  z  ->  x  =  z )  <->  A. z  e.  om  ( suc  y  ~~  z  ->  suc  y  =  z ) ) )
13 breq1 3902 . . . . . 6  |-  ( x  =  A  ->  (
x  ~~  z  <->  A  ~~  z ) )
14 eqeq1 2124 . . . . . 6  |-  ( x  =  A  ->  (
x  =  z  <->  A  =  z ) )
1513, 14imbi12d 233 . . . . 5  |-  ( x  =  A  ->  (
( x  ~~  z  ->  x  =  z )  <-> 
( A  ~~  z  ->  A  =  z ) ) )
1615ralbidv 2414 . . . 4  |-  ( x  =  A  ->  ( A. z  e.  om  ( x  ~~  z  ->  x  =  z )  <->  A. z  e.  om  ( A  ~~  z  ->  A  =  z ) ) )
17 ensym 6643 . . . . . 6  |-  ( (/)  ~~  z  ->  z  ~~  (/) )
18 en0 6657 . . . . . . 7  |-  ( z 
~~  (/)  <->  z  =  (/) )
19 eqcom 2119 . . . . . . 7  |-  ( z  =  (/)  <->  (/)  =  z )
2018, 19bitri 183 . . . . . 6  |-  ( z 
~~  (/)  <->  (/)  =  z )
2117, 20sylib 121 . . . . 5  |-  ( (/)  ~~  z  ->  (/)  =  z )
2221rgenw 2464 . . . 4  |-  A. z  e.  om  ( (/)  ~~  z  -> 
(/)  =  z )
23 nn0suc 4488 . . . . . . 7  |-  ( w  e.  om  ->  (
w  =  (/)  \/  E. z  e.  om  w  =  suc  z ) )
24 en0 6657 . . . . . . . . . . . 12  |-  ( suc  y  ~~  (/)  <->  suc  y  =  (/) )
25 breq2 3903 . . . . . . . . . . . . 13  |-  ( w  =  (/)  ->  ( suc  y  ~~  w  <->  suc  y  ~~  (/) ) )
26 eqeq2 2127 . . . . . . . . . . . . 13  |-  ( w  =  (/)  ->  ( suc  y  =  w  <->  suc  y  =  (/) ) )
2725, 26bibi12d 234 . . . . . . . . . . . 12  |-  ( w  =  (/)  ->  ( ( suc  y  ~~  w  <->  suc  y  =  w )  <-> 
( suc  y  ~~  (/)  <->  suc  y  =  (/) ) ) )
2824, 27mpbiri 167 . . . . . . . . . . 11  |-  ( w  =  (/)  ->  ( suc  y  ~~  w  <->  suc  y  =  w ) )
2928biimpd 143 . . . . . . . . . 10  |-  ( w  =  (/)  ->  ( suc  y  ~~  w  ->  suc  y  =  w
) )
3029a1i 9 . . . . . . . . 9  |-  ( ( y  e.  om  /\  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) )  ->  ( w  =  (/)  ->  ( suc  y  ~~  w  ->  suc  y  =  w ) ) )
31 nfv 1493 . . . . . . . . . . 11  |-  F/ z  y  e.  om
32 nfra1 2443 . . . . . . . . . . 11  |-  F/ z A. z  e.  om  ( y  ~~  z  ->  y  =  z )
3331, 32nfan 1529 . . . . . . . . . 10  |-  F/ z ( y  e.  om  /\ 
A. z  e.  om  ( y  ~~  z  ->  y  =  z ) )
34 nfv 1493 . . . . . . . . . 10  |-  F/ z ( suc  y  ~~  w  ->  suc  y  =  w )
35 rsp 2457 . . . . . . . . . . . . . 14  |-  ( A. z  e.  om  (
y  ~~  z  ->  y  =  z )  -> 
( z  e.  om  ->  ( y  ~~  z  ->  y  =  z ) ) )
36 vex 2663 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
37 vex 2663 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
3836, 37phplem4 6717 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( suc  y  ~~  suc  z  ->  y  ~~  z ) )
3938imim1d 75 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( ( y  ~~  z  ->  y  =  z )  ->  ( suc  y  ~~  suc  z  -> 
y  =  z ) ) )
4039ex 114 . . . . . . . . . . . . . . 15  |-  ( y  e.  om  ->  (
z  e.  om  ->  ( ( y  ~~  z  ->  y  =  z )  ->  ( suc  y  ~~  suc  z  ->  y  =  z ) ) ) )
4140a2d 26 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  (
( z  e.  om  ->  ( y  ~~  z  ->  y  =  z ) )  ->  ( z  e.  om  ->  ( suc  y  ~~  suc  z  -> 
y  =  z ) ) ) )
4235, 41syl5 32 . . . . . . . . . . . . 13  |-  ( y  e.  om  ->  ( A. z  e.  om  ( y  ~~  z  ->  y  =  z )  ->  ( z  e. 
om  ->  ( suc  y  ~~  suc  z  ->  y  =  z ) ) ) )
4342imp 123 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) )  ->  ( z  e. 
om  ->  ( suc  y  ~~  suc  z  ->  y  =  z ) ) )
44 suceq 4294 . . . . . . . . . . . 12  |-  ( y  =  z  ->  suc  y  =  suc  z )
4543, 44syl8 71 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) )  ->  ( z  e. 
om  ->  ( suc  y  ~~  suc  z  ->  suc  y  =  suc  z ) ) )
46 breq2 3903 . . . . . . . . . . . . 13  |-  ( w  =  suc  z  -> 
( suc  y  ~~  w 
<->  suc  y  ~~  suc  z ) )
47 eqeq2 2127 . . . . . . . . . . . . 13  |-  ( w  =  suc  z  -> 
( suc  y  =  w 
<->  suc  y  =  suc  z ) )
4846, 47imbi12d 233 . . . . . . . . . . . 12  |-  ( w  =  suc  z  -> 
( ( suc  y  ~~  w  ->  suc  y  =  w )  <->  ( suc  y  ~~  suc  z  ->  suc  y  =  suc  z ) ) )
4948biimprcd 159 . . . . . . . . . . 11  |-  ( ( suc  y  ~~  suc  z  ->  suc  y  =  suc  z )  ->  (
w  =  suc  z  ->  ( suc  y  ~~  w  ->  suc  y  =  w ) ) )
5045, 49syl6 33 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) )  ->  ( z  e. 
om  ->  ( w  =  suc  z  ->  ( suc  y  ~~  w  ->  suc  y  =  w
) ) ) )
5133, 34, 50rexlimd 2523 . . . . . . . . 9  |-  ( ( y  e.  om  /\  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) )  ->  ( E. z  e.  om  w  =  suc  z  ->  ( suc  y  ~~  w  ->  suc  y  =  w ) ) )
5230, 51jaod 691 . . . . . . . 8  |-  ( ( y  e.  om  /\  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) )  ->  ( ( w  =  (/)  \/  E. z  e.  om  w  =  suc  z )  ->  ( suc  y  ~~  w  ->  suc  y  =  w
) ) )
5352ex 114 . . . . . . 7  |-  ( y  e.  om  ->  ( A. z  e.  om  ( y  ~~  z  ->  y  =  z )  ->  ( ( w  =  (/)  \/  E. z  e.  om  w  =  suc  z )  ->  ( suc  y  ~~  w  ->  suc  y  =  w
) ) ) )
5423, 53syl7 69 . . . . . 6  |-  ( y  e.  om  ->  ( A. z  e.  om  ( y  ~~  z  ->  y  =  z )  ->  ( w  e. 
om  ->  ( suc  y  ~~  w  ->  suc  y  =  w ) ) ) )
5554ralrimdv 2488 . . . . 5  |-  ( y  e.  om  ->  ( A. z  e.  om  ( y  ~~  z  ->  y  =  z )  ->  A. w  e.  om  ( suc  y  ~~  w  ->  suc  y  =  w ) ) )
56 breq2 3903 . . . . . . 7  |-  ( w  =  z  ->  ( suc  y  ~~  w  <->  suc  y  ~~  z ) )
57 eqeq2 2127 . . . . . . 7  |-  ( w  =  z  ->  ( suc  y  =  w  <->  suc  y  =  z ) )
5856, 57imbi12d 233 . . . . . 6  |-  ( w  =  z  ->  (
( suc  y  ~~  w  ->  suc  y  =  w )  <->  ( suc  y  ~~  z  ->  suc  y  =  z )
) )
5958cbvralv 2631 . . . . 5  |-  ( A. w  e.  om  ( suc  y  ~~  w  ->  suc  y  =  w
)  <->  A. z  e.  om  ( suc  y  ~~  z  ->  suc  y  =  z ) )
6055, 59syl6ib 160 . . . 4  |-  ( y  e.  om  ->  ( A. z  e.  om  ( y  ~~  z  ->  y  =  z )  ->  A. z  e.  om  ( suc  y  ~~  z  ->  suc  y  =  z ) ) )
614, 8, 12, 16, 22, 60finds 4484 . . 3  |-  ( A  e.  om  ->  A. z  e.  om  ( A  ~~  z  ->  A  =  z ) )
62 breq2 3903 . . . . 5  |-  ( z  =  B  ->  ( A  ~~  z  <->  A  ~~  B ) )
63 eqeq2 2127 . . . . 5  |-  ( z  =  B  ->  ( A  =  z  <->  A  =  B ) )
6462, 63imbi12d 233 . . . 4  |-  ( z  =  B  ->  (
( A  ~~  z  ->  A  =  z )  <-> 
( A  ~~  B  ->  A  =  B ) ) )
6564rspcv 2759 . . 3  |-  ( B  e.  om  ->  ( A. z  e.  om  ( A  ~~  z  ->  A  =  z )  ->  ( A  ~~  B  ->  A  =  B ) ) )
6661, 65mpan9 279 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~~  B  ->  A  =  B ) )
67 eqeng 6628 . . 3  |-  ( A  e.  om  ->  ( A  =  B  ->  A 
~~  B ) )
6867adantr 274 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  ->  A  ~~  B
) )
6966, 68impbid 128 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~~  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 682    = wceq 1316    e. wcel 1465   A.wral 2393   E.wrex 2394   (/)c0 3333   class class class wbr 3899   suc csuc 4257   omcom 4474    ~~ cen 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-er 6397  df-en 6603
This theorem is referenced by:  findcard2  6751  findcard2s  6752  unsnfidcex  6776  unsnfidcel  6777  exmidonfinlem  7017  hashen  10498  hashunlem  10518
  Copyright terms: Public domain W3C validator