ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmass Unicode version

Theorem nnmass 6131
Description: Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmass  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) )

Proof of Theorem nnmass
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5551 . . . . . 6  |-  ( x  =  C  ->  (
( A  .o  B
)  .o  x )  =  ( ( A  .o  B )  .o  C ) )
2 oveq2 5551 . . . . . . 7  |-  ( x  =  C  ->  ( B  .o  x )  =  ( B  .o  C
) )
32oveq2d 5559 . . . . . 6  |-  ( x  =  C  ->  ( A  .o  ( B  .o  x ) )  =  ( A  .o  ( B  .o  C ) ) )
41, 3eqeq12d 2096 . . . . 5  |-  ( x  =  C  ->  (
( ( A  .o  B )  .o  x
)  =  ( A  .o  ( B  .o  x ) )  <->  ( ( A  .o  B )  .o  C )  =  ( A  .o  ( B  .o  C ) ) ) )
54imbi2d 228 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( ( A  .o  B )  .o  x )  =  ( A  .o  ( B  .o  x ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) ) ) )
6 oveq2 5551 . . . . . 6  |-  ( x  =  (/)  ->  ( ( A  .o  B )  .o  x )  =  ( ( A  .o  B )  .o  (/) ) )
7 oveq2 5551 . . . . . . 7  |-  ( x  =  (/)  ->  ( B  .o  x )  =  ( B  .o  (/) ) )
87oveq2d 5559 . . . . . 6  |-  ( x  =  (/)  ->  ( A  .o  ( B  .o  x ) )  =  ( A  .o  ( B  .o  (/) ) ) )
96, 8eqeq12d 2096 . . . . 5  |-  ( x  =  (/)  ->  ( ( ( A  .o  B
)  .o  x )  =  ( A  .o  ( B  .o  x
) )  <->  ( ( A  .o  B )  .o  (/) )  =  ( A  .o  ( B  .o  (/) ) ) ) )
10 oveq2 5551 . . . . . 6  |-  ( x  =  y  ->  (
( A  .o  B
)  .o  x )  =  ( ( A  .o  B )  .o  y ) )
11 oveq2 5551 . . . . . . 7  |-  ( x  =  y  ->  ( B  .o  x )  =  ( B  .o  y
) )
1211oveq2d 5559 . . . . . 6  |-  ( x  =  y  ->  ( A  .o  ( B  .o  x ) )  =  ( A  .o  ( B  .o  y ) ) )
1310, 12eqeq12d 2096 . . . . 5  |-  ( x  =  y  ->  (
( ( A  .o  B )  .o  x
)  =  ( A  .o  ( B  .o  x ) )  <->  ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  y ) ) ) )
14 oveq2 5551 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( A  .o  B )  .o  x
)  =  ( ( A  .o  B )  .o  suc  y ) )
15 oveq2 5551 . . . . . . 7  |-  ( x  =  suc  y  -> 
( B  .o  x
)  =  ( B  .o  suc  y ) )
1615oveq2d 5559 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  .o  ( B  .o  x ) )  =  ( A  .o  ( B  .o  suc  y
) ) )
1714, 16eqeq12d 2096 . . . . 5  |-  ( x  =  suc  y  -> 
( ( ( A  .o  B )  .o  x )  =  ( A  .o  ( B  .o  x ) )  <-> 
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) )
18 nnmcl 6125 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
19 nnm0 6119 . . . . . . 7  |-  ( ( A  .o  B )  e.  om  ->  (
( A  .o  B
)  .o  (/) )  =  (/) )
2018, 19syl 14 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  .o  (/) )  =  (/) )
21 nnm0 6119 . . . . . . . 8  |-  ( B  e.  om  ->  ( B  .o  (/) )  =  (/) )
2221oveq2d 5559 . . . . . . 7  |-  ( B  e.  om  ->  ( A  .o  ( B  .o  (/) ) )  =  ( A  .o  (/) ) )
23 nnm0 6119 . . . . . . 7  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
2422, 23sylan9eqr 2136 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  .o  (/) ) )  =  (/) )
2520, 24eqtr4d 2117 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  .o  (/) )  =  ( A  .o  ( B  .o  (/) ) ) )
26 oveq1 5550 . . . . . . . . 9  |-  ( ( ( A  .o  B
)  .o  y )  =  ( A  .o  ( B  .o  y
) )  ->  (
( ( A  .o  B )  .o  y
)  +o  ( A  .o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B
) ) )
27 nnmsuc 6121 . . . . . . . . . . . 12  |-  ( ( ( A  .o  B
)  e.  om  /\  y  e.  om )  ->  ( ( A  .o  B )  .o  suc  y )  =  ( ( ( A  .o  B )  .o  y
)  +o  ( A  .o  B ) ) )
2818, 27sylan 277 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( A  .o  B )  .o 
suc  y )  =  ( ( ( A  .o  B )  .o  y )  +o  ( A  .o  B ) ) )
29283impa 1134 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  B
)  .o  suc  y
)  =  ( ( ( A  .o  B
)  .o  y )  +o  ( A  .o  B ) ) )
30 nnmsuc 6121 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
31303adant1 957 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y )  +o  B ) )
3231oveq2d 5559 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( B  .o  suc  y ) )  =  ( A  .o  (
( B  .o  y
)  +o  B ) ) )
33 nnmcl 6125 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  .o  y
)  e.  om )
34 nndi 6130 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  om  /\  ( B  .o  y
)  e.  om  /\  B  e.  om )  ->  ( A  .o  (
( B  .o  y
)  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B ) ) )
3533, 34syl3an2 1204 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )  /\  B  e.  om )  ->  ( A  .o  ( ( B  .o  y )  +o  B
) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B ) ) )
36353exp 1138 . . . . . . . . . . . . . . 15  |-  ( A  e.  om  ->  (
( B  e.  om  /\  y  e.  om )  ->  ( B  e.  om  ->  ( A  .o  (
( B  .o  y
)  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B ) ) ) ) )
3736expd 254 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( B  e.  om  ->  ( A  .o  ( ( B  .o  y )  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B
) ) ) ) ) )
3837com34 82 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( A  .o  ( ( B  .o  y )  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B
) ) ) ) ) )
3938pm2.43d 49 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( A  .o  ( ( B  .o  y )  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B
) ) ) ) )
40393imp 1133 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( ( B  .o  y )  +o  B ) )  =  ( ( A  .o  ( B  .o  y
) )  +o  ( A  .o  B ) ) )
4132, 40eqtrd 2114 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( B  .o  suc  y ) )  =  ( ( A  .o  ( B  .o  y
) )  +o  ( A  .o  B ) ) )
4229, 41eqeq12d 2096 . . . . . . . . 9  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) )  <->  ( ( ( A  .o  B )  .o  y )  +o  ( A  .o  B
) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B ) ) ) )
4326, 42syl5ibr 154 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( ( A  .o  B )  .o  y
)  =  ( A  .o  ( B  .o  y ) )  -> 
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) )
44433exp 1138 . . . . . . 7  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( ( A  .o  B )  .o  y
)  =  ( A  .o  ( B  .o  y ) )  -> 
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) ) ) )
4544com3r 78 . . . . . 6  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( B  e.  om  ->  ( ( ( A  .o  B )  .o  y
)  =  ( A  .o  ( B  .o  y ) )  -> 
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) ) ) )
4645impd 251 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  y ) )  ->  ( ( A  .o  B )  .o 
suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) ) )
479, 13, 17, 25, 46finds2 4350 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  .o  x
)  =  ( A  .o  ( B  .o  x ) ) ) )
485, 47vtoclga 2665 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  .o  C
)  =  ( A  .o  ( B  .o  C ) ) ) )
4948expdcom 1372 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( C  e.  om  ->  ( ( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) ) ) )
50493imp 1133 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    = wceq 1285    e. wcel 1434   (/)c0 3258   suc csuc 4128   omcom 4339  (class class class)co 5543    +o coa 6062    .o comu 6063
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-oadd 6069  df-omul 6070
This theorem is referenced by:  mulasspig  6584  enq0tr  6686  addcmpblnq0  6695  mulcmpblnq0  6696  mulcanenq0ec  6697  distrnq0  6711  addassnq0  6714
  Copyright terms: Public domain W3C validator