ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmsucr Unicode version

Theorem nnmsucr 6352
Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmsucr  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  .o  B )  =  ( ( A  .o  B
)  +o  B ) )

Proof of Theorem nnmsucr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5750 . . . . 5  |-  ( x  =  B  ->  ( suc  A  .o  x )  =  ( suc  A  .o  B ) )
2 oveq2 5750 . . . . . 6  |-  ( x  =  B  ->  ( A  .o  x )  =  ( A  .o  B
) )
3 id 19 . . . . . 6  |-  ( x  =  B  ->  x  =  B )
42, 3oveq12d 5760 . . . . 5  |-  ( x  =  B  ->  (
( A  .o  x
)  +o  x )  =  ( ( A  .o  B )  +o  B ) )
51, 4eqeq12d 2132 . . . 4  |-  ( x  =  B  ->  (
( suc  A  .o  x )  =  ( ( A  .o  x
)  +o  x )  <-> 
( suc  A  .o  B )  =  ( ( A  .o  B
)  +o  B ) ) )
65imbi2d 229 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( suc  A  .o  x )  =  ( ( A  .o  x
)  +o  x ) )  <->  ( A  e. 
om  ->  ( suc  A  .o  B )  =  ( ( A  .o  B
)  +o  B ) ) ) )
7 oveq2 5750 . . . . 5  |-  ( x  =  (/)  ->  ( suc 
A  .o  x )  =  ( suc  A  .o  (/) ) )
8 oveq2 5750 . . . . . 6  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
9 id 19 . . . . . 6  |-  ( x  =  (/)  ->  x  =  (/) )
108, 9oveq12d 5760 . . . . 5  |-  ( x  =  (/)  ->  ( ( A  .o  x )  +o  x )  =  ( ( A  .o  (/) )  +o  (/) ) )
117, 10eqeq12d 2132 . . . 4  |-  ( x  =  (/)  ->  ( ( suc  A  .o  x
)  =  ( ( A  .o  x )  +o  x )  <->  ( suc  A  .o  (/) )  =  ( ( A  .o  (/) )  +o  (/) ) ) )
12 oveq2 5750 . . . . 5  |-  ( x  =  y  ->  ( suc  A  .o  x )  =  ( suc  A  .o  y ) )
13 oveq2 5750 . . . . . 6  |-  ( x  =  y  ->  ( A  .o  x )  =  ( A  .o  y
) )
14 id 19 . . . . . 6  |-  ( x  =  y  ->  x  =  y )
1513, 14oveq12d 5760 . . . . 5  |-  ( x  =  y  ->  (
( A  .o  x
)  +o  x )  =  ( ( A  .o  y )  +o  y ) )
1612, 15eqeq12d 2132 . . . 4  |-  ( x  =  y  ->  (
( suc  A  .o  x )  =  ( ( A  .o  x
)  +o  x )  <-> 
( suc  A  .o  y )  =  ( ( A  .o  y
)  +o  y ) ) )
17 oveq2 5750 . . . . 5  |-  ( x  =  suc  y  -> 
( suc  A  .o  x )  =  ( suc  A  .o  suc  y ) )
18 oveq2 5750 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  .o  x
)  =  ( A  .o  suc  y ) )
19 id 19 . . . . . 6  |-  ( x  =  suc  y  ->  x  =  suc  y )
2018, 19oveq12d 5760 . . . . 5  |-  ( x  =  suc  y  -> 
( ( A  .o  x )  +o  x
)  =  ( ( A  .o  suc  y
)  +o  suc  y
) )
2117, 20eqeq12d 2132 . . . 4  |-  ( x  =  suc  y  -> 
( ( suc  A  .o  x )  =  ( ( A  .o  x
)  +o  x )  <-> 
( suc  A  .o  suc  y )  =  ( ( A  .o  suc  y )  +o  suc  y ) ) )
22 peano2 4479 . . . . . . 7  |-  ( A  e.  om  ->  suc  A  e.  om )
23 nnm0 6339 . . . . . . 7  |-  ( suc 
A  e.  om  ->  ( suc  A  .o  (/) )  =  (/) )
2422, 23syl 14 . . . . . 6  |-  ( A  e.  om  ->  ( suc  A  .o  (/) )  =  (/) )
25 nnm0 6339 . . . . . 6  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
2624, 25eqtr4d 2153 . . . . 5  |-  ( A  e.  om  ->  ( suc  A  .o  (/) )  =  ( A  .o  (/) ) )
27 peano1 4478 . . . . . . 7  |-  (/)  e.  om
28 nnmcl 6345 . . . . . . 7  |-  ( ( A  e.  om  /\  (/) 
e.  om )  ->  ( A  .o  (/) )  e.  om )
2927, 28mpan2 421 . . . . . 6  |-  ( A  e.  om  ->  ( A  .o  (/) )  e.  om )
30 nna0 6338 . . . . . 6  |-  ( ( A  .o  (/) )  e. 
om  ->  ( ( A  .o  (/) )  +o  (/) )  =  ( A  .o  (/) ) )
3129, 30syl 14 . . . . 5  |-  ( A  e.  om  ->  (
( A  .o  (/) )  +o  (/) )  =  ( A  .o  (/) ) )
3226, 31eqtr4d 2153 . . . 4  |-  ( A  e.  om  ->  ( suc  A  .o  (/) )  =  ( ( A  .o  (/) )  +o  (/) ) )
33 oveq1 5749 . . . . . 6  |-  ( ( suc  A  .o  y
)  =  ( ( A  .o  y )  +o  y )  -> 
( ( suc  A  .o  y )  +o  suc  A )  =  ( ( ( A  .o  y
)  +o  y )  +o  suc  A ) )
34 peano2b 4498 . . . . . . . 8  |-  ( A  e.  om  <->  suc  A  e. 
om )
35 nnmsuc 6341 . . . . . . . 8  |-  ( ( suc  A  e.  om  /\  y  e.  om )  ->  ( suc  A  .o  suc  y )  =  ( ( suc  A  .o  y )  +o  suc  A ) )
3634, 35sylanb 282 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( suc  A  .o  suc  y )  =  ( ( suc  A  .o  y )  +o  suc  A ) )
37 nnmcl 6345 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  y
)  e.  om )
38 peano2b 4498 . . . . . . . . . . . 12  |-  ( y  e.  om  <->  suc  y  e. 
om )
39 nnaass 6349 . . . . . . . . . . . 12  |-  ( ( ( A  .o  y
)  e.  om  /\  A  e.  om  /\  suc  y  e.  om )  ->  ( ( ( A  .o  y )  +o  A )  +o  suc  y )  =  ( ( A  .o  y
)  +o  ( A  +o  suc  y ) ) )
4038, 39syl3an3b 1239 . . . . . . . . . . 11  |-  ( ( ( A  .o  y
)  e.  om  /\  A  e.  om  /\  y  e.  om )  ->  (
( ( A  .o  y )  +o  A
)  +o  suc  y
)  =  ( ( A  .o  y )  +o  ( A  +o  suc  y ) ) )
4137, 40syl3an1 1234 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  A  e.  om  /\  y  e.  om )  ->  ( ( ( A  .o  y )  +o  A )  +o  suc  y )  =  ( ( A  .o  y
)  +o  ( A  +o  suc  y ) ) )
42413expb 1167 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  ( A  e.  om  /\  y  e.  om )
)  ->  ( (
( A  .o  y
)  +o  A )  +o  suc  y )  =  ( ( A  .o  y )  +o  ( A  +o  suc  y ) ) )
4342anidms 394 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  .o  y )  +o  A )  +o  suc  y )  =  ( ( A  .o  y
)  +o  ( A  +o  suc  y ) ) )
44 nnmsuc 6341 . . . . . . . . 9  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
4544oveq1d 5757 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  suc  y )  +o  suc  y )  =  ( ( ( A  .o  y )  +o  A
)  +o  suc  y
) )
46 nnaass 6349 . . . . . . . . . . . . . 14  |-  ( ( ( A  .o  y
)  e.  om  /\  y  e.  om  /\  suc  A  e.  om )  -> 
( ( ( A  .o  y )  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
4734, 46syl3an3b 1239 . . . . . . . . . . . . 13  |-  ( ( ( A  .o  y
)  e.  om  /\  y  e.  om  /\  A  e.  om )  ->  (
( ( A  .o  y )  +o  y
)  +o  suc  A
)  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
4837, 47syl3an1 1234 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  y  e.  om  /\  A  e.  om )  ->  ( ( ( A  .o  y )  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
49483expb 1167 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  ( y  e.  om  /\  A  e.  om )
)  ->  ( (
( A  .o  y
)  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o  suc  A ) ) )
5049an42s 563 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  ( A  e.  om  /\  y  e.  om )
)  ->  ( (
( A  .o  y
)  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o  suc  A ) ) )
5150anidms 394 . . . . . . . . 9  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  .o  y )  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
52 nnacom 6348 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  y
)  =  ( y  +o  A ) )
53 suceq 4294 . . . . . . . . . . . 12  |-  ( ( A  +o  y )  =  ( y  +o  A )  ->  suc  ( A  +o  y
)  =  suc  (
y  +o  A ) )
5452, 53syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  y  e.  om )  ->  suc  ( A  +o  y )  =  suc  ( y  +o  A
) )
55 nnasuc 6340 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
56 nnasuc 6340 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  A  e.  om )  ->  ( y  +o  suc  A )  =  suc  (
y  +o  A ) )
5756ancoms 266 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( y  +o  suc  A )  =  suc  (
y  +o  A ) )
5854, 55, 573eqtr4d 2160 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  ( y  +o  suc  A
) )
5958oveq2d 5758 . . . . . . . . 9  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  y )  +o  ( A  +o  suc  y ) )  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
6051, 59eqtr4d 2153 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  .o  y )  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( A  +o  suc  y ) ) )
6143, 45, 603eqtr4d 2160 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  suc  y )  +o  suc  y )  =  ( ( ( A  .o  y )  +o  y
)  +o  suc  A
) )
6236, 61eqeq12d 2132 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( suc  A  .o  suc  y )  =  ( ( A  .o  suc  y )  +o  suc  y )  <->  ( ( suc  A  .o  y )  +o  suc  A )  =  ( ( ( A  .o  y )  +o  y )  +o 
suc  A ) ) )
6333, 62syl5ibr 155 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( suc  A  .o  y )  =  ( ( A  .o  y
)  +o  y )  ->  ( suc  A  .o  suc  y )  =  ( ( A  .o  suc  y )  +o  suc  y ) ) )
6463expcom 115 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( suc  A  .o  y )  =  ( ( A  .o  y
)  +o  y )  ->  ( suc  A  .o  suc  y )  =  ( ( A  .o  suc  y )  +o  suc  y ) ) ) )
6511, 16, 21, 32, 64finds2 4485 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( suc  A  .o  x
)  =  ( ( A  .o  x )  +o  x ) ) )
666, 65vtoclga 2726 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( suc  A  .o  B
)  =  ( ( A  .o  B )  +o  B ) ) )
6766impcom 124 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  .o  B )  =  ( ( A  .o  B
)  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465   (/)c0 3333   suc csuc 4257   omcom 4474  (class class class)co 5742    +o coa 6278    .o comu 6279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-oadd 6285  df-omul 6286
This theorem is referenced by:  nnmcom  6353
  Copyright terms: Public domain W3C validator