ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnlt1 Unicode version

Theorem nnnlt1 8168
Description: A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
nnnlt1  |-  ( A  e.  NN  ->  -.  A  <  1 )

Proof of Theorem nnnlt1
StepHypRef Expression
1 nnge1 8165 . 2  |-  ( A  e.  NN  ->  1  <_  A )
2 1re 7216 . . 3  |-  1  e.  RR
3 nnre 8149 . . 3  |-  ( A  e.  NN  ->  A  e.  RR )
4 lenlt 7290 . . 3  |-  ( ( 1  e.  RR  /\  A  e.  RR )  ->  ( 1  <_  A  <->  -.  A  <  1 ) )
52, 3, 4sylancr 405 . 2  |-  ( A  e.  NN  ->  (
1  <_  A  <->  -.  A  <  1 ) )
61, 5mpbid 145 1  |-  ( A  e.  NN  ->  -.  A  <  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 103    e. wcel 1434   class class class wbr 3806   RRcr 7078   1c1 7080    < clt 7251    <_ cle 7252   NNcn 8142
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-cnex 7165  ax-resscn 7166  ax-1re 7168  ax-addrcl 7171  ax-0lt1 7180  ax-0id 7182  ax-rnegex 7183  ax-pre-ltirr 7186  ax-pre-lttrn 7188  ax-pre-ltadd 7190
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-br 3807  df-opab 3861  df-xp 4398  df-cnv 4400  df-iota 4918  df-fv 4961  df-ov 5567  df-pnf 7253  df-mnf 7254  df-xr 7255  df-ltxr 7256  df-le 7257  df-inn 8143
This theorem is referenced by:  0nnn  8169  nnsub  8180  indstr  8798  indstr2  8813  sqrt2irr  10732
  Copyright terms: Public domain W3C validator