![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnn0 | Unicode version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nnnn0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 8428 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3004 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-n0 8426 |
This theorem is referenced by: nnnn0i 8433 elnnnn0b 8469 elnnnn0c 8470 elnn0z 8515 elz2 8570 nn0ind-raph 8615 zindd 8616 fzo1fzo0n0 9339 ubmelfzo 9356 elfzom1elp1fzo 9358 fzo0sn0fzo1 9377 modqmulnn 9494 expnegap0 9651 expcllem 9654 expcl2lemap 9655 expap0 9673 expeq0 9674 mulexpzap 9683 expnlbnd 9764 facdiv 9832 faclbnd 9835 faclbnd3 9837 faclbnd6 9838 resqrexlemlo 10118 absexpzap 10185 nn0enne 10527 nnehalf 10529 nno 10531 nn0o 10532 divalg2 10551 ndvdssub 10555 gcddiv 10633 gcdmultiple 10634 gcdmultiplez 10635 rpmulgcd 10640 rplpwr 10641 dvdssqlem 10644 eucalgf 10662 1nprm 10721 isprm6 10751 prmdvdsexp 10752 pw2dvds 10769 oddpwdc 10777 phicl2 10815 phibndlem 10817 phiprmpw 10823 crth 10825 hashgcdlem 10828 |
Copyright terms: Public domain | W3C validator |