ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0addcl Unicode version

Theorem nnnn0addcl 8385
Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnnn0addcl  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN )

Proof of Theorem nnnn0addcl
StepHypRef Expression
1 elnn0 8357 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 nnaddcl 8126 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
3 oveq2 5551 . . . . 5  |-  ( N  =  0  ->  ( M  +  N )  =  ( M  + 
0 ) )
4 nncn 8114 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  CC )
54addid1d 7324 . . . . 5  |-  ( M  e.  NN  ->  ( M  +  0 )  =  M )
63, 5sylan9eqr 2136 . . . 4  |-  ( ( M  e.  NN  /\  N  =  0 )  ->  ( M  +  N )  =  M )
7 simpl 107 . . . 4  |-  ( ( M  e.  NN  /\  N  =  0 )  ->  M  e.  NN )
86, 7eqeltrd 2156 . . 3  |-  ( ( M  e.  NN  /\  N  =  0 )  ->  ( M  +  N )  e.  NN )
92, 8jaodan 744 . 2  |-  ( ( M  e.  NN  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( M  +  N )  e.  NN )
101, 9sylan2b 281 1  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 662    = wceq 1285    e. wcel 1434  (class class class)co 5543   0cc0 7043    + caddc 7046   NNcn 8106   NN0cn0 8355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addass 7140  ax-i2m1 7143  ax-0id 7146
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-iota 4897  df-fv 4940  df-ov 5546  df-inn 8107  df-n0 8356
This theorem is referenced by:  nn0nnaddcl  8386  elz2  8500
  Copyright terms: Public domain W3C validator