![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnn0d | Unicode version |
Description: A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnnn0d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nnnn0d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 8358 |
. 2
![]() ![]() ![]() ![]() | |
2 | nnnn0d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sseldi 2998 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-n0 8356 |
This theorem is referenced by: nn0ge2m1nn0 8416 nnzd 8549 eluzge2nn0 8739 modsumfzodifsn 9478 addmodlteq 9480 expinnval 9576 expgt1 9611 expaddzaplem 9616 expaddzap 9617 expmulzap 9619 expnbnd 9693 facwordi 9764 faclbnd 9765 facavg 9770 bcm1k 9784 ibcval5 9787 1elfz0size 9830 resqrexlemnm 10042 resqrexlemcvg 10043 dvdsfac 10405 divalglemnqt 10464 divalglemeunn 10465 gcdval 10495 gcdcl 10502 mulgcd 10549 rplpwr 10560 rppwr 10561 lcmcl 10598 lcmgcdnn 10608 nprmdvds1 10665 rpexp 10676 pw2dvdslemn 10687 sqpweven 10697 2sqpwodd 10698 nn0sqrtelqelz 10728 |
Copyright terms: Public domain | W3C validator |