ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrecl Unicode version

Theorem nnrecl 8353
Description: There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.)
Assertion
Ref Expression
nnrecl  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  n
)  <  A )
Distinct variable group:    A, n

Proof of Theorem nnrecl
StepHypRef Expression
1 simpl 107 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR )
2 gt0ap0 7792 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
31, 2rerecclapd 7986 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
4 arch 8352 . . 3  |-  ( ( 1  /  A )  e.  RR  ->  E. n  e.  NN  ( 1  /  A )  <  n
)
53, 4syl 14 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  A
)  <  n )
6 recgt0 7995 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
73, 6jca 300 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  e.  RR  /\  0  <  ( 1  /  A ) ) )
8 nnre 8113 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  RR )
9 nngt0 8131 . . . . . 6  |-  ( n  e.  NN  ->  0  <  n )
108, 9jca 300 . . . . 5  |-  ( n  e.  NN  ->  (
n  e.  RR  /\  0  <  n ) )
11 ltrec 8028 . . . . 5  |-  ( ( ( ( 1  /  A )  e.  RR  /\  0  <  ( 1  /  A ) )  /\  ( n  e.  RR  /\  0  < 
n ) )  -> 
( ( 1  /  A )  <  n  <->  ( 1  /  n )  <  ( 1  / 
( 1  /  A
) ) ) )
127, 10, 11syl2an 283 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  n  e.  NN )  ->  ( ( 1  /  A )  < 
n  <->  ( 1  /  n )  <  (
1  /  ( 1  /  A ) ) ) )
13 recn 7168 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
1413adantr 270 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  CC )
1514, 2recrecapd 7940 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  (
1  /  A ) )  =  A )
1615breq2d 3805 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  n )  <  (
1  /  ( 1  /  A ) )  <-> 
( 1  /  n
)  <  A )
)
1716adantr 270 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  n  e.  NN )  ->  ( ( 1  /  n )  < 
( 1  /  (
1  /  A ) )  <->  ( 1  /  n )  <  A
) )
1812, 17bitrd 186 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  n  e.  NN )  ->  ( ( 1  /  A )  < 
n  <->  ( 1  /  n )  <  A
) )
1918rexbidva 2366 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( E. n  e.  NN  ( 1  /  A )  <  n  <->  E. n  e.  NN  (
1  /  n )  <  A ) )
205, 19mpbid 145 1  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  n
)  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   E.wrex 2350   class class class wbr 3793  (class class class)co 5543   CCcc 7041   RRcr 7042   0cc0 7043   1c1 7044    < clt 7215    / cdiv 7827   NNcn 8106
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156  ax-arch 7157
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107
This theorem is referenced by:  qbtwnre  9343
  Copyright terms: Public domain W3C validator