![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnred | Unicode version |
Description: A positive integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnred.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nnred |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 8099 |
. 2
![]() ![]() ![]() ![]() | |
2 | nnred.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sseldi 2998 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-cnex 7118 ax-resscn 7119 ax-1re 7121 ax-addrcl 7124 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-v 2604 df-in 2980 df-ss 2987 df-int 3639 df-inn 8096 |
This theorem is referenced by: exbtwnzlemstep 9323 qbtwnrelemcalc 9331 qbtwnre 9332 flqdiv 9392 modqmulnn 9413 modifeq2int 9457 modaddmodup 9458 modaddmodlo 9459 modsumfzodifsn 9467 addmodlteq 9469 bernneq3 9681 expnbnd 9682 facwordi 9753 faclbnd 9754 faclbnd2 9755 faclbnd3 9756 faclbnd6 9757 facubnd 9758 facavg 9759 bcp1nk 9775 ibcval5 9776 caucvgrelemcau 9993 caucvgre 9994 cvg1nlemcxze 9995 cvg1nlemcau 9997 cvg1nlemres 9998 resqrexlemdecn 10025 resqrexlemga 10036 dvdslelemd 10377 nno 10439 nnoddm1d2 10443 divalglemnqt 10453 divalglemeunn 10454 dvdsbnd 10481 sqgcd 10551 lcmgcdlem 10592 ncoprmgcdne1b 10604 prmind2 10635 coprm 10656 prmfac1 10664 sqrt2irraplemnn 10690 |
Copyright terms: Public domain | W3C validator |