ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri3or Unicode version

Theorem nntri3or 6103
Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nntri3or  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )

Proof of Theorem nntri3or
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2117 . . . . 5  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
2 eqeq2 2065 . . . . 5  |-  ( x  =  B  ->  ( A  =  x  <->  A  =  B ) )
3 eleq1 2116 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
41, 2, 33orbi123d 1217 . . . 4  |-  ( x  =  B  ->  (
( A  e.  x  \/  A  =  x  \/  x  e.  A
)  <->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) ) )
54imbi2d 223 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  e.  x  \/  A  =  x  \/  x  e.  A
) )  <->  ( A  e.  om  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) ) ) )
6 eleq2 2117 . . . . 5  |-  ( x  =  (/)  ->  ( A  e.  x  <->  A  e.  (/) ) )
7 eqeq2 2065 . . . . 5  |-  ( x  =  (/)  ->  ( A  =  x  <->  A  =  (/) ) )
8 eleq1 2116 . . . . 5  |-  ( x  =  (/)  ->  ( x  e.  A  <->  (/)  e.  A
) )
96, 7, 83orbi123d 1217 . . . 4  |-  ( x  =  (/)  ->  ( ( A  e.  x  \/  A  =  x  \/  x  e.  A )  <-> 
( A  e.  (/)  \/  A  =  (/)  \/  (/)  e.  A
) ) )
10 eleq2 2117 . . . . 5  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
11 eqeq2 2065 . . . . 5  |-  ( x  =  y  ->  ( A  =  x  <->  A  =  y ) )
12 eleq1 2116 . . . . 5  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
1310, 11, 123orbi123d 1217 . . . 4  |-  ( x  =  y  ->  (
( A  e.  x  \/  A  =  x  \/  x  e.  A
)  <->  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) ) )
14 eleq2 2117 . . . . 5  |-  ( x  =  suc  y  -> 
( A  e.  x  <->  A  e.  suc  y ) )
15 eqeq2 2065 . . . . 5  |-  ( x  =  suc  y  -> 
( A  =  x  <-> 
A  =  suc  y
) )
16 eleq1 2116 . . . . 5  |-  ( x  =  suc  y  -> 
( x  e.  A  <->  suc  y  e.  A ) )
1714, 15, 163orbi123d 1217 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  e.  x  \/  A  =  x  \/  x  e.  A )  <->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
18 0elnn 4368 . . . . 5  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
19 olc 642 . . . . . 6  |-  ( ( A  =  (/)  \/  (/)  e.  A
)  ->  ( A  e.  (/)  \/  ( A  =  (/)  \/  (/)  e.  A
) ) )
20 3orass 899 . . . . . 6  |-  ( ( A  e.  (/)  \/  A  =  (/)  \/  (/)  e.  A
)  <->  ( A  e.  (/)  \/  ( A  =  (/)  \/  (/)  e.  A ) ) )
2119, 20sylibr 141 . . . . 5  |-  ( ( A  =  (/)  \/  (/)  e.  A
)  ->  ( A  e.  (/)  \/  A  =  (/)  \/  (/)  e.  A ) )
2218, 21syl 14 . . . 4  |-  ( A  e.  om  ->  ( A  e.  (/)  \/  A  =  (/)  \/  (/)  e.  A
) )
23 df-3or 897 . . . . . 6  |-  ( ( A  e.  y  \/  A  =  y  \/  y  e.  A )  <-> 
( ( A  e.  y  \/  A  =  y )  \/  y  e.  A ) )
24 elex 2583 . . . . . . . 8  |-  ( y  e.  om  ->  y  e.  _V )
25 elsuc2g 4170 . . . . . . . . 9  |-  ( y  e.  _V  ->  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) ) )
26 3mix1 1084 . . . . . . . . 9  |-  ( A  e.  suc  y  -> 
( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
)
2725, 26syl6bir 157 . . . . . . . 8  |-  ( y  e.  _V  ->  (
( A  e.  y  \/  A  =  y )  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
2824, 27syl 14 . . . . . . 7  |-  ( y  e.  om  ->  (
( A  e.  y  \/  A  =  y )  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
29 nnsucelsuc 6101 . . . . . . . . 9  |-  ( A  e.  om  ->  (
y  e.  A  <->  suc  y  e. 
suc  A ) )
30 elsuci 4168 . . . . . . . . 9  |-  ( suc  y  e.  suc  A  ->  ( suc  y  e.  A  \/  suc  y  =  A ) )
3129, 30syl6bi 156 . . . . . . . 8  |-  ( A  e.  om  ->  (
y  e.  A  -> 
( suc  y  e.  A  \/  suc  y  =  A ) ) )
32 eqcom 2058 . . . . . . . . . . . . 13  |-  ( suc  y  =  A  <->  A  =  suc  y )
3332orbi2i 689 . . . . . . . . . . . 12  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  <->  ( suc  y  e.  A  \/  A  =  suc  y ) )
3433biimpi 117 . . . . . . . . . . 11  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  ->  ( suc  y  e.  A  \/  A  =  suc  y ) )
3534orcomd 658 . . . . . . . . . 10  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  ->  ( A  =  suc  y  \/  suc  y  e.  A )
)
3635olcd 663 . . . . . . . . 9  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  ->  ( A  e.  suc  y  \/  ( A  =  suc  y  \/ 
suc  y  e.  A
) ) )
37 3orass 899 . . . . . . . . 9  |-  ( ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )  <->  ( A  e.  suc  y  \/  ( A  =  suc  y  \/ 
suc  y  e.  A
) ) )
3836, 37sylibr 141 . . . . . . . 8  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
)
3931, 38syl6 33 . . . . . . 7  |-  ( A  e.  om  ->  (
y  e.  A  -> 
( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
4028, 39jaao 649 . . . . . 6  |-  ( ( y  e.  om  /\  A  e.  om )  ->  ( ( ( A  e.  y  \/  A  =  y )  \/  y  e.  A )  ->  ( A  e. 
suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
4123, 40syl5bi 145 . . . . 5  |-  ( ( y  e.  om  /\  A  e.  om )  ->  ( ( A  e.  y  \/  A  =  y  \/  y  e.  A )  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A
) ) )
4241ex 112 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  e.  y  \/  A  =  y  \/  y  e.  A
)  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) ) )
439, 13, 17, 22, 42finds2 4352 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  e.  x  \/  A  =  x  \/  x  e.  A ) ) )
445, 43vtoclga 2636 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
) )
4544impcom 120 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    \/ wo 639    \/ w3o 895    = wceq 1259    e. wcel 1409   _Vcvv 2574   (/)c0 3252   suc csuc 4130   omcom 4341
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-uni 3609  df-int 3644  df-tr 3883  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342
This theorem is referenced by:  nntri2  6104  nntri1  6105  nntri3  6106  nntri2or2  6107  nndceq  6108  nndcel  6109  nnsseleq  6110  nnawordex  6132  nnwetri  6385  ltsopi  6476  pitri3or  6478  frec2uzlt2d  9354
  Copyright terms: Public domain W3C validator