ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nonsq Unicode version

Theorem nonsq 11885
Description: Any integer strictly between two adjacent squares has a non-rational square root. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
nonsq  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  -.  ( sqr `  A )  e.  QQ )

Proof of Theorem nonsq
StepHypRef Expression
1 nn0z 9074 . . . 4  |-  ( B  e.  NN0  ->  B  e.  ZZ )
21ad2antlr 480 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  B  e.  ZZ )
3 simprl 520 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( B ^ 2 )  < 
A )
4 simpll 518 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  A  e.  NN0 )
54nn0red 9031 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  A  e.  RR )
64nn0ge0d 9033 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  0  <_  A )
7 resqrtth 10803 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  =  A )
85, 6, 7syl2anc 408 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( ( sqr `  A ) ^
2 )  =  A )
93, 8breqtrrd 3956 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( B ^ 2 )  < 
( ( sqr `  A
) ^ 2 ) )
10 simplr 519 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  B  e.  NN0 )
1110nn0red 9031 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  B  e.  RR )
12 nn0re 8986 . . . . . . 7  |-  ( A  e.  NN0  ->  A  e.  RR )
1312ad2antrr 479 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  A  e.  RR )
1413, 6resqrtcld 10935 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( sqr `  A )  e.  RR )
1510nn0ge0d 9033 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  0  <_  B )
1613, 6sqrtge0d 10938 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  0  <_  ( sqr `  A ) )
1711, 14, 15, 16lt2sqd 10455 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( B  <  ( sqr `  A
)  <->  ( B ^
2 )  <  (
( sqr `  A
) ^ 2 ) ) )
189, 17mpbird 166 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  B  <  ( sqr `  A ) )
19 simprr 521 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  A  <  ( ( B  +  1 ) ^ 2 ) )
208, 19eqbrtrd 3950 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( ( sqr `  A ) ^
2 )  <  (
( B  +  1 ) ^ 2 ) )
21 peano2re 7898 . . . . . 6  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
2211, 21syl 14 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( B  +  1 )  e.  RR )
23 peano2nn0 9017 . . . . . . 7  |-  ( B  e.  NN0  ->  ( B  +  1 )  e. 
NN0 )
2423ad2antlr 480 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( B  +  1 )  e. 
NN0 )
2524nn0ge0d 9033 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  0  <_  ( B  +  1 ) )
2614, 22, 16, 25lt2sqd 10455 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( ( sqr `  A )  < 
( B  +  1 )  <->  ( ( sqr `  A ) ^ 2 )  <  ( ( B  +  1 ) ^ 2 ) ) )
2720, 26mpbird 166 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( sqr `  A )  <  ( B  +  1 ) )
28 btwnnz 9145 . . 3  |-  ( ( B  e.  ZZ  /\  B  <  ( sqr `  A
)  /\  ( sqr `  A )  <  ( B  +  1 ) )  ->  -.  ( sqr `  A )  e.  ZZ )
292, 18, 27, 28syl3anc 1216 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  -.  ( sqr `  A )  e.  ZZ )
30 nn0sqrtelqelz 11884 . . . 4  |-  ( ( A  e.  NN0  /\  ( sqr `  A )  e.  QQ )  -> 
( sqr `  A
)  e.  ZZ )
3130ex 114 . . 3  |-  ( A  e.  NN0  ->  ( ( sqr `  A )  e.  QQ  ->  ( sqr `  A )  e.  ZZ ) )
3231ad2antrr 479 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  ( ( sqr `  A )  e.  QQ  ->  ( sqr `  A )  e.  ZZ ) )
3329, 32mtod 652 1  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( ( B ^
2 )  <  A  /\  A  <  ( ( B  +  1 ) ^ 2 ) ) )  ->  -.  ( sqr `  A )  e.  QQ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    < clt 7800    <_ cle 7801   2c2 8771   NN0cn0 8977   ZZcz 9054   QQcq 9411   ^cexp 10292   sqrcsqrt 10768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-gcd 11636  df-numer 11861  df-denom 11862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator