Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  notab Unicode version

Theorem notab 3250
 Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.)
Assertion
Ref Expression
notab

Proof of Theorem notab
StepHypRef Expression
1 df-rab 2362 . . 3
2 rabab 2629 . . 3
31, 2eqtr3i 2105 . 2
4 difab 3249 . . 3
5 abid2 2203 . . . 4
65difeq1i 3096 . . 3
74, 6eqtr3i 2105 . 2
83, 7eqtr3i 2105 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 102   wceq 1285   wcel 1434  cab 2069  crab 2357  cvv 2610   cdif 2979 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-rab 2362  df-v 2612  df-dif 2984 This theorem is referenced by:  dfif3  3381
 Copyright terms: Public domain W3C validator