ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0a0 Unicode version

Theorem nq0a0 7233
Description: Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0a0  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )

Proof of Theorem nq0a0
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7218 . 2  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
2 df-0nq0 7202 . . . . . 6  |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
3 oveq12 5751 . . . . . 6  |-  ( ( A  =  [ <. w ,  v >. ] ~Q0  /\ 0Q0  =  [ <. (/) ,  1o >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  ) )
42, 3mpan2 421 . . . . 5  |-  ( A  =  [ <. w ,  v >. ] ~Q0  ->  ( A +Q0 0Q0 )  =  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  ) )
5 peano1 4478 . . . . . 6  |-  (/)  e.  om
6 1pi 7091 . . . . . 6  |-  1o  e.  N.
7 addnnnq0 7225 . . . . . 6  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( (/)  e.  om  /\  1o  e.  N. )
)  ->  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <. (/) ,  1o >. ] ~Q0  )  =  [ <. (
( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o )
>. ] ~Q0  )
85, 6, 7mpanr12 435 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  )  =  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o )
>. ] ~Q0  )
94, 8sylan9eqr 2172 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  )
10 pinn 7085 . . . . . . . . . 10  |-  ( v  e.  N.  ->  v  e.  om )
11 nnm0 6339 . . . . . . . . . . 11  |-  ( v  e.  om  ->  (
v  .o  (/) )  =  (/) )
1211oveq2d 5758 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
( w  .o  1o )  +o  ( v  .o  (/) ) )  =  ( ( w  .o  1o )  +o  (/) ) )
1310, 12syl 14 . . . . . . . . 9  |-  ( v  e.  N.  ->  (
( w  .o  1o )  +o  ( v  .o  (/) ) )  =  ( ( w  .o  1o )  +o  (/) ) )
14 nnm1 6388 . . . . . . . . . . 11  |-  ( w  e.  om  ->  (
w  .o  1o )  =  w )
1514oveq1d 5757 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
( w  .o  1o )  +o  (/) )  =  ( w  +o  (/) ) )
16 nna0 6338 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
w  +o  (/) )  =  w )
1715, 16eqtrd 2150 . . . . . . . . 9  |-  ( w  e.  om  ->  (
( w  .o  1o )  +o  (/) )  =  w )
1813, 17sylan9eqr 2172 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( ( w  .o  1o )  +o  (
v  .o  (/) ) )  =  w )
19 nnm1 6388 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
v  .o  1o )  =  v )
2010, 19syl 14 . . . . . . . . 9  |-  ( v  e.  N.  ->  (
v  .o  1o )  =  v )
2120adantl 275 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( v  .o  1o )  =  v )
2218, 21opeq12d 3683 . . . . . . 7  |-  ( ( w  e.  om  /\  v  e.  N. )  -> 
<. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >.  =  <. w ,  v >. )
2322eceq1d 6433 . . . . . 6  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  )
2423eqeq2d 2129 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( A  =  [ <. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  <-> 
A  =  [ <. w ,  v >. ] ~Q0  ) )
2524biimpar 295 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  A  =  [ <. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  )
269, 25eqtr4d 2153 . . 3  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  A )
2726exlimivv 1852 . 2  |-  ( E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  A )
281, 27syl 14 1  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316   E.wex 1453    e. wcel 1465   (/)c0 3333   <.cop 3500   omcom 4474  (class class class)co 5742   1oc1o 6274    +o coa 6278    .o comu 6279   [cec 6395   N.cnpi 7048   ~Q0 ceq0 7062  Q0cnq0 7063  0Q0c0q0 7064   +Q0 cplq0 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-mi 7082  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203
This theorem is referenced by:  prarloclem5  7276
  Copyright terms: Public domain W3C validator