ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0pi Unicode version

Theorem nqnq0pi 6690
Description: A non-negative fraction is a positive fraction if its numerator and denominator are positive integers. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0pi  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ]  ~Q  )

Proof of Theorem nqnq0pi
Dummy variables  v  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 4400 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. ) 
<->  ( A  e.  N.  /\  B  e.  N. )
)
2 vex 2605 . . . . . . 7  |-  y  e. 
_V
32elima2 4704 . . . . . 6  |-  ( y  e.  ( ~Q0 
" ( N.  X.  N. ) )  <->  E. x
( x  e.  ( N.  X.  N. )  /\  x ~Q0  y ) )
4 elxp 4388 . . . . . . . . . 10  |-  ( x  e.  ( N.  X.  N. )  <->  E. z E. w
( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
) )
54anbi1i 446 . . . . . . . . 9  |-  ( ( x  e.  ( N. 
X.  N. )  /\  x ~Q0  y )  <-> 
( E. z E. w ( x  = 
<. z ,  w >.  /\  ( z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y ) )
6 19.41vv 1825 . . . . . . . . 9  |-  ( E. z E. w ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  <->  ( E. z E. w ( x  =  <. z ,  w >.  /\  ( z  e. 
N.  /\  w  e.  N. ) )  /\  x ~Q0  y ) )
75, 6bitr4i 185 . . . . . . . 8  |-  ( ( x  e.  ( N. 
X.  N. )  /\  x ~Q0  y )  <->  E. z E. w ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y ) )
8 simplr 497 . . . . . . . . . . 11  |-  ( ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  (
z  e.  N.  /\  w  e.  N. )
)
9 breq1 3796 . . . . . . . . . . . . 13  |-  ( x  =  <. z ,  w >.  ->  ( x ~Q0  y  <->  <. z ,  w >. ~Q0  y
) )
109adantr 270 . . . . . . . . . . . 12  |-  ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  ->  ( x ~Q0  y  <->  <. z ,  w >. ~Q0  y ) )
1110biimpa 290 . . . . . . . . . . 11  |-  ( ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  <. z ,  w >. ~Q0  y )
12 id 19 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  ( (
z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
) )
13 enq0er 6687 . . . . . . . . . . . . . . 15  |- ~Q0  Er  ( om  X.  N. )
1413a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  -> ~Q0  Er  ( om  X.  N. ) )
15 simpr 108 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  <. z ,  w >. ~Q0  y )
1614, 15ercl2 6185 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  y  e.  ( om  X.  N. )
)
17 elxp 4388 . . . . . . . . . . . . 13  |-  ( y  e.  ( om  X.  N. )  <->  E. u E. v
( y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )
1816, 17sylib 120 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  E. u E. v ( y  = 
<. u ,  v >.  /\  ( u  e.  om  /\  v  e.  N. )
) )
19 19.42vv 1830 . . . . . . . . . . . 12  |-  ( E. u E. v ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  <->  ( (
( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  /\  E. u E. v ( y  = 
<. u ,  v >.  /\  ( u  e.  om  /\  v  e.  N. )
) ) )
2012, 18, 19sylanbrc 408 . . . . . . . . . . 11  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  E. u E. v ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  /\  ( y  =  <. u ,  v
>.  /\  ( u  e. 
om  /\  v  e.  N. ) ) ) )
218, 11, 20syl2anc 403 . . . . . . . . . 10  |-  ( ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  E. u E. v ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  /\  ( y  =  <. u ,  v
>.  /\  ( u  e. 
om  /\  v  e.  N. ) ) ) )
22 simprrl 506 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  u  e.  om )
23 elni 6560 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  N.  <->  ( z  e.  om  /\  z  =/=  (/) ) )
2423simprbi 269 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  e.  N.  ->  z  =/=  (/) )
2524neneqd 2267 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  N.  ->  -.  z  =  (/) )
2625ad2antrr 472 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  -.  z  =  (/) )
27 elni 6560 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  e.  N.  <->  ( v  e.  om  /\  v  =/=  (/) ) )
2827simprbi 269 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  e.  N.  ->  v  =/=  (/) )
2928neneqd 2267 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  e.  N.  ->  -.  v  =  (/) )
3029ad2antll 475 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  -.  v  =  (/) )
3126, 30jca 300 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( -.  z  =  (/)  /\  -.  v  =  (/) ) )
32 pm4.56 840 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  z  =  (/)  /\ 
-.  v  =  (/) ) 
<->  -.  ( z  =  (/)  \/  v  =  (/) ) )
3331, 32sylib 120 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  -.  (
z  =  (/)  \/  v  =  (/) ) )
34 pinn 6561 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  N.  ->  z  e.  om )
3534ad2antrr 472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  z  e.  om )
36 pinn 6561 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  e.  N.  ->  v  e.  om )
3736ad2antll 475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  v  e.  om )
38 nnm00 6168 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  om  /\  v  e.  om )  ->  ( ( z  .o  v )  =  (/)  <->  (
z  =  (/)  \/  v  =  (/) ) ) )
3935, 37, 38syl2anc 403 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( (
z  .o  v )  =  (/)  <->  ( z  =  (/)  \/  v  =  (/) ) ) )
4033, 39mtbird 631 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  -.  (
z  .o  v )  =  (/) )
4140ad2ant2rl 495 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  -.  ( z  .o  v
)  =  (/) )
42 breq2 3797 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  <. u ,  v
>.  ->  ( <. z ,  w >. ~Q0  y  <->  <. z ,  w >. ~Q0  <. u ,  v >. )
)
4342biimpac 292 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. z ,  w >. ~Q0  y  /\  y  =  <. u ,  v >. )  ->  <. z ,  w >. ~Q0 
<. u ,  v >.
)
4443ad2ant2lr 494 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  <. z ,  w >. ~Q0 
<. u ,  v >.
)
45 enq0breq 6688 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( <. z ,  w >. ~Q0 
<. u ,  v >.  <->  ( z  .o  v )  =  ( w  .o  u ) ) )
4634, 45sylanl1 394 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( <. z ,  w >. ~Q0 
<. u ,  v >.  <->  ( z  .o  v )  =  ( w  .o  u ) ) )
4746ad2ant2rl 495 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  ( <. z ,  w >. ~Q0  <. u ,  v >.  <->  ( z  .o  v )  =  ( w  .o  u ) ) )
4844, 47mpbid 145 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  (
z  .o  v )  =  ( w  .o  u ) )
4948eqeq1d 2090 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  (
( z  .o  v
)  =  (/)  <->  ( w  .o  u )  =  (/) ) )
5041, 49mtbid 630 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  -.  ( w  .o  u
)  =  (/) )
51 pinn 6561 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  N.  ->  w  e.  om )
52 nnm00 6168 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( w  e.  om  /\  u  e.  om )  ->  ( ( w  .o  u )  =  (/)  <->  (
w  =  (/)  \/  u  =  (/) ) ) )
5351, 52sylan 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  N.  /\  u  e.  om )  ->  ( ( w  .o  u )  =  (/)  <->  (
w  =  (/)  \/  u  =  (/) ) ) )
5453ad2ant2lr 494 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( (
w  .o  u )  =  (/)  <->  ( w  =  (/)  \/  u  =  (/) ) ) )
5554ad2ant2rl 495 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  (
( w  .o  u
)  =  (/)  <->  ( w  =  (/)  \/  u  =  (/) ) ) )
5650, 55mtbid 630 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  -.  ( w  =  (/)  \/  u  =  (/) ) )
57 pm4.56 840 . . . . . . . . . . . . . . . 16  |-  ( ( -.  w  =  (/)  /\ 
-.  u  =  (/) ) 
<->  -.  ( w  =  (/)  \/  u  =  (/) ) )
5856, 57sylibr 132 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  ( -.  w  =  (/)  /\  -.  u  =  (/) ) )
5958simprd 112 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  -.  u  =  (/) )
6059neneqad 2325 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  u  =/=  (/) )
61 elni 6560 . . . . . . . . . . . . 13  |-  ( u  e.  N.  <->  ( u  e.  om  /\  u  =/=  (/) ) )
6222, 60, 61sylanbrc 408 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  u  e.  N. )
63 simprrr 507 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  v  e.  N. )
64 eleq1 2142 . . . . . . . . . . . . . 14  |-  ( y  =  <. u ,  v
>.  ->  ( y  e.  ( N.  X.  N. ) 
<-> 
<. u ,  v >.  e.  ( N.  X.  N. ) ) )
65 opelxp 4400 . . . . . . . . . . . . . 14  |-  ( <.
u ,  v >.  e.  ( N.  X.  N. ) 
<->  ( u  e.  N.  /\  v  e.  N. )
)
6664, 65syl6bb 194 . . . . . . . . . . . . 13  |-  ( y  =  <. u ,  v
>.  ->  ( y  e.  ( N.  X.  N. ) 
<->  ( u  e.  N.  /\  v  e.  N. )
) )
6766ad2antrl 474 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  (
y  e.  ( N. 
X.  N. )  <->  ( u  e.  N.  /\  v  e. 
N. ) ) )
6862, 63, 67mpbir2and 886 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  y  e.  ( N.  X.  N. ) )
6968exlimivv 1818 . . . . . . . . . 10  |-  ( E. u E. v ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  y  e.  ( N.  X.  N. ) )
7021, 69syl 14 . . . . . . . . 9  |-  ( ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  y  e.  ( N.  X.  N. ) )
7170exlimivv 1818 . . . . . . . 8  |-  ( E. z E. w ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  y  e.  ( N.  X.  N. ) )
727, 71sylbi 119 . . . . . . 7  |-  ( ( x  e.  ( N. 
X.  N. )  /\  x ~Q0  y )  ->  y  e.  ( N.  X.  N. )
)
7372exlimiv 1530 . . . . . 6  |-  ( E. x ( x  e.  ( N.  X.  N. )  /\  x ~Q0  y )  ->  y  e.  ( N.  X.  N. ) )
743, 73sylbi 119 . . . . 5  |-  ( y  e.  ( ~Q0 
" ( N.  X.  N. ) )  ->  y  e.  ( N.  X.  N. ) )
7574ssriv 3004 . . . 4  |-  ( ~Q0  " ( N.  X.  N. ) ) 
C_  ( N.  X.  N. )
76 ecinxp 6247 . . . 4  |-  ( ( ( ~Q0  " ( N.  X.  N. ) )  C_  ( N.  X.  N. )  /\  <. A ,  B >.  e.  ( N.  X.  N. ) )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ( ~Q0  i^i  (
( N.  X.  N. )  X.  ( N.  X.  N. ) ) ) )
7775, 76mpan 415 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ( ~Q0  i^i  (
( N.  X.  N. )  X.  ( N.  X.  N. ) ) ) )
781, 77sylbir 133 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ( ~Q0  i^i  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) ) )
79 enq0enq 6683 . . 3  |-  ~Q  =  ( ~Q0  i^i  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
80 eceq2 6209 . . 3  |-  (  ~Q  =  ( ~Q0  i^i  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) )  ->  [ <. A ,  B >. ]  ~Q  =  [ <. A ,  B >. ] ( ~Q0  i^i  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) ) )
8179, 80ax-mp 7 . 2  |-  [ <. A ,  B >. ]  ~Q  =  [ <. A ,  B >. ] ( ~Q0  i^i  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) )
8278, 81syl6eqr 2132 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ]  ~Q  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662    = wceq 1285   E.wex 1422    e. wcel 1434    =/= wne 2246    i^i cin 2973    C_ wss 2974   (/)c0 3258   <.cop 3409   class class class wbr 3793   omcom 4339    X. cxp 4369   "cima 4374  (class class class)co 5543    .o comu 6063    Er wer 6169   [cec 6170   N.cnpi 6524    ~Q ceq 6531   ~Q0 ceq0 6538
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-ni 6556  df-mi 6558  df-enq 6599  df-enq0 6676
This theorem is referenced by:  nqnq0  6693  nqpnq0nq  6705  nqnq0a  6706  nqnq0m  6707  prarloclemlo  6746  prarloclemcalc  6754
  Copyright terms: Public domain W3C validator