ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0pi Unicode version

Theorem nqnq0pi 7246
Description: A nonnegative fraction is a positive fraction if its numerator and denominator are positive integers. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0pi  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ]  ~Q  )

Proof of Theorem nqnq0pi
Dummy variables  v  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 4569 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. ) 
<->  ( A  e.  N.  /\  B  e.  N. )
)
2 vex 2689 . . . . . . 7  |-  y  e. 
_V
32elima2 4887 . . . . . 6  |-  ( y  e.  ( ~Q0 
" ( N.  X.  N. ) )  <->  E. x
( x  e.  ( N.  X.  N. )  /\  x ~Q0  y ) )
4 elxp 4556 . . . . . . . . . 10  |-  ( x  e.  ( N.  X.  N. )  <->  E. z E. w
( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
) )
54anbi1i 453 . . . . . . . . 9  |-  ( ( x  e.  ( N. 
X.  N. )  /\  x ~Q0  y )  <-> 
( E. z E. w ( x  = 
<. z ,  w >.  /\  ( z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y ) )
6 19.41vv 1875 . . . . . . . . 9  |-  ( E. z E. w ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  <->  ( E. z E. w ( x  =  <. z ,  w >.  /\  ( z  e. 
N.  /\  w  e.  N. ) )  /\  x ~Q0  y ) )
75, 6bitr4i 186 . . . . . . . 8  |-  ( ( x  e.  ( N. 
X.  N. )  /\  x ~Q0  y )  <->  E. z E. w ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y ) )
8 simplr 519 . . . . . . . . . . 11  |-  ( ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  (
z  e.  N.  /\  w  e.  N. )
)
9 breq1 3932 . . . . . . . . . . . . 13  |-  ( x  =  <. z ,  w >.  ->  ( x ~Q0  y  <->  <. z ,  w >. ~Q0  y
) )
109adantr 274 . . . . . . . . . . . 12  |-  ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  ->  ( x ~Q0  y  <->  <. z ,  w >. ~Q0  y ) )
1110biimpa 294 . . . . . . . . . . 11  |-  ( ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  <. z ,  w >. ~Q0  y )
12 id 19 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  ( (
z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
) )
13 enq0er 7243 . . . . . . . . . . . . . . 15  |- ~Q0  Er  ( om  X.  N. )
1413a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  -> ~Q0  Er  ( om  X.  N. ) )
15 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  <. z ,  w >. ~Q0  y )
1614, 15ercl2 6442 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  y  e.  ( om  X.  N. )
)
17 elxp 4556 . . . . . . . . . . . . 13  |-  ( y  e.  ( om  X.  N. )  <->  E. u E. v
( y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )
1816, 17sylib 121 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  E. u E. v ( y  = 
<. u ,  v >.  /\  ( u  e.  om  /\  v  e.  N. )
) )
19 19.42vv 1883 . . . . . . . . . . . 12  |-  ( E. u E. v ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  <->  ( (
( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  /\  E. u E. v ( y  = 
<. u ,  v >.  /\  ( u  e.  om  /\  v  e.  N. )
) ) )
2012, 18, 19sylanbrc 413 . . . . . . . . . . 11  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  E. u E. v ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  /\  ( y  =  <. u ,  v
>.  /\  ( u  e. 
om  /\  v  e.  N. ) ) ) )
218, 11, 20syl2anc 408 . . . . . . . . . 10  |-  ( ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  E. u E. v ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  /\  ( y  =  <. u ,  v
>.  /\  ( u  e. 
om  /\  v  e.  N. ) ) ) )
22 simprrl 528 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  u  e.  om )
23 elni 7116 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  N.  <->  ( z  e.  om  /\  z  =/=  (/) ) )
2423simprbi 273 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  e.  N.  ->  z  =/=  (/) )
2524neneqd 2329 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  N.  ->  -.  z  =  (/) )
2625ad2antrr 479 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  -.  z  =  (/) )
27 elni 7116 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  e.  N.  <->  ( v  e.  om  /\  v  =/=  (/) ) )
2827simprbi 273 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  e.  N.  ->  v  =/=  (/) )
2928neneqd 2329 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  e.  N.  ->  -.  v  =  (/) )
3029ad2antll 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  -.  v  =  (/) )
3126, 30jca 304 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( -.  z  =  (/)  /\  -.  v  =  (/) ) )
32 pm4.56 769 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  z  =  (/)  /\ 
-.  v  =  (/) ) 
<->  -.  ( z  =  (/)  \/  v  =  (/) ) )
3331, 32sylib 121 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  -.  (
z  =  (/)  \/  v  =  (/) ) )
34 pinn 7117 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  N.  ->  z  e.  om )
3534ad2antrr 479 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  z  e.  om )
36 pinn 7117 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  e.  N.  ->  v  e.  om )
3736ad2antll 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  v  e.  om )
38 nnm00 6425 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  om  /\  v  e.  om )  ->  ( ( z  .o  v )  =  (/)  <->  (
z  =  (/)  \/  v  =  (/) ) ) )
3935, 37, 38syl2anc 408 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( (
z  .o  v )  =  (/)  <->  ( z  =  (/)  \/  v  =  (/) ) ) )
4033, 39mtbird 662 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  -.  (
z  .o  v )  =  (/) )
4140ad2ant2rl 502 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  -.  ( z  .o  v
)  =  (/) )
42 breq2 3933 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  <. u ,  v
>.  ->  ( <. z ,  w >. ~Q0  y  <->  <. z ,  w >. ~Q0  <. u ,  v >. )
)
4342biimpac 296 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. z ,  w >. ~Q0  y  /\  y  =  <. u ,  v >. )  ->  <. z ,  w >. ~Q0 
<. u ,  v >.
)
4443ad2ant2lr 501 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  <. z ,  w >. ~Q0 
<. u ,  v >.
)
45 enq0breq 7244 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( <. z ,  w >. ~Q0 
<. u ,  v >.  <->  ( z  .o  v )  =  ( w  .o  u ) ) )
4634, 45sylanl1 399 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( <. z ,  w >. ~Q0 
<. u ,  v >.  <->  ( z  .o  v )  =  ( w  .o  u ) ) )
4746ad2ant2rl 502 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  ( <. z ,  w >. ~Q0  <. u ,  v >.  <->  ( z  .o  v )  =  ( w  .o  u ) ) )
4844, 47mpbid 146 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  (
z  .o  v )  =  ( w  .o  u ) )
4948eqeq1d 2148 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  (
( z  .o  v
)  =  (/)  <->  ( w  .o  u )  =  (/) ) )
5041, 49mtbid 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  -.  ( w  .o  u
)  =  (/) )
51 pinn 7117 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  N.  ->  w  e.  om )
52 nnm00 6425 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( w  e.  om  /\  u  e.  om )  ->  ( ( w  .o  u )  =  (/)  <->  (
w  =  (/)  \/  u  =  (/) ) ) )
5351, 52sylan 281 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  N.  /\  u  e.  om )  ->  ( ( w  .o  u )  =  (/)  <->  (
w  =  (/)  \/  u  =  (/) ) ) )
5453ad2ant2lr 501 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( (
w  .o  u )  =  (/)  <->  ( w  =  (/)  \/  u  =  (/) ) ) )
5554ad2ant2rl 502 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  (
( w  .o  u
)  =  (/)  <->  ( w  =  (/)  \/  u  =  (/) ) ) )
5650, 55mtbid 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  -.  ( w  =  (/)  \/  u  =  (/) ) )
57 pm4.56 769 . . . . . . . . . . . . . . . 16  |-  ( ( -.  w  =  (/)  /\ 
-.  u  =  (/) ) 
<->  -.  ( w  =  (/)  \/  u  =  (/) ) )
5856, 57sylibr 133 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  ( -.  w  =  (/)  /\  -.  u  =  (/) ) )
5958simprd 113 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  -.  u  =  (/) )
6059neneqad 2387 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  u  =/=  (/) )
61 elni 7116 . . . . . . . . . . . . 13  |-  ( u  e.  N.  <->  ( u  e.  om  /\  u  =/=  (/) ) )
6222, 60, 61sylanbrc 413 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  u  e.  N. )
63 simprrr 529 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  v  e.  N. )
64 eleq1 2202 . . . . . . . . . . . . . 14  |-  ( y  =  <. u ,  v
>.  ->  ( y  e.  ( N.  X.  N. ) 
<-> 
<. u ,  v >.  e.  ( N.  X.  N. ) ) )
65 opelxp 4569 . . . . . . . . . . . . . 14  |-  ( <.
u ,  v >.  e.  ( N.  X.  N. ) 
<->  ( u  e.  N.  /\  v  e.  N. )
)
6664, 65syl6bb 195 . . . . . . . . . . . . 13  |-  ( y  =  <. u ,  v
>.  ->  ( y  e.  ( N.  X.  N. ) 
<->  ( u  e.  N.  /\  v  e.  N. )
) )
6766ad2antrl 481 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  (
y  e.  ( N. 
X.  N. )  <->  ( u  e.  N.  /\  v  e. 
N. ) ) )
6862, 63, 67mpbir2and 928 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  y  e.  ( N.  X.  N. ) )
6968exlimivv 1868 . . . . . . . . . 10  |-  ( E. u E. v ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  y  e.  ( N.  X.  N. ) )
7021, 69syl 14 . . . . . . . . 9  |-  ( ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  y  e.  ( N.  X.  N. ) )
7170exlimivv 1868 . . . . . . . 8  |-  ( E. z E. w ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  y  e.  ( N.  X.  N. ) )
727, 71sylbi 120 . . . . . . 7  |-  ( ( x  e.  ( N. 
X.  N. )  /\  x ~Q0  y )  ->  y  e.  ( N.  X.  N. )
)
7372exlimiv 1577 . . . . . 6  |-  ( E. x ( x  e.  ( N.  X.  N. )  /\  x ~Q0  y )  ->  y  e.  ( N.  X.  N. ) )
743, 73sylbi 120 . . . . 5  |-  ( y  e.  ( ~Q0 
" ( N.  X.  N. ) )  ->  y  e.  ( N.  X.  N. ) )
7574ssriv 3101 . . . 4  |-  ( ~Q0  " ( N.  X.  N. ) ) 
C_  ( N.  X.  N. )
76 ecinxp 6504 . . . 4  |-  ( ( ( ~Q0  " ( N.  X.  N. ) )  C_  ( N.  X.  N. )  /\  <. A ,  B >.  e.  ( N.  X.  N. ) )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ( ~Q0  i^i  (
( N.  X.  N. )  X.  ( N.  X.  N. ) ) ) )
7775, 76mpan 420 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ( ~Q0  i^i  (
( N.  X.  N. )  X.  ( N.  X.  N. ) ) ) )
781, 77sylbir 134 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ( ~Q0  i^i  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) ) )
79 enq0enq 7239 . . 3  |-  ~Q  =  ( ~Q0  i^i  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
80 eceq2 6466 . . 3  |-  (  ~Q  =  ( ~Q0  i^i  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) )  ->  [ <. A ,  B >. ]  ~Q  =  [ <. A ,  B >. ] ( ~Q0  i^i  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) ) )
8179, 80ax-mp 5 . 2  |-  [ <. A ,  B >. ]  ~Q  =  [ <. A ,  B >. ] ( ~Q0  i^i  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) )
8278, 81syl6eqr 2190 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ]  ~Q  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331   E.wex 1468    e. wcel 1480    =/= wne 2308    i^i cin 3070    C_ wss 3071   (/)c0 3363   <.cop 3530   class class class wbr 3929   omcom 4504    X. cxp 4537   "cima 4542  (class class class)co 5774    .o comu 6311    Er wer 6426   [cec 6427   N.cnpi 7080    ~Q ceq 7087   ~Q0 ceq0 7094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-ni 7112  df-mi 7114  df-enq 7155  df-enq0 7232
This theorem is referenced by:  nqnq0  7249  nqpnq0nq  7261  nqnq0a  7262  nqnq0m  7263  prarloclemlo  7302  prarloclemcalc  7310
  Copyright terms: Public domain W3C validator