ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprdisj Unicode version

Theorem nqprdisj 6848
Description: A cut produced from a rational is disjoint. Lemma for nqprlu 6851. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprdisj  |-  ( A  e.  Q.  ->  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
) )
Distinct variable group:    x, A, q

Proof of Theorem nqprdisj
StepHypRef Expression
1 ltsonq 6702 . . . . 5  |-  <Q  Or  Q.
2 ltrelnq 6669 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
31, 2son2lpi 4771 . . . 4  |-  -.  (
q  <Q  A  /\  A  <Q  q )
4 vex 2613 . . . . . 6  |-  q  e. 
_V
5 breq1 3808 . . . . . 6  |-  ( x  =  q  ->  (
x  <Q  A  <->  q  <Q  A ) )
64, 5elab 2746 . . . . 5  |-  ( q  e.  { x  |  x  <Q  A }  <->  q 
<Q  A )
7 breq2 3809 . . . . . 6  |-  ( x  =  q  ->  ( A  <Q  x  <->  A  <Q  q ) )
84, 7elab 2746 . . . . 5  |-  ( q  e.  { x  |  A  <Q  x }  <->  A 
<Q  q )
96, 8anbi12i 448 . . . 4  |-  ( ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
)  <->  ( q  <Q  A  /\  A  <Q  q
) )
103, 9mtbir 629 . . 3  |-  -.  (
q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
)
1110rgenw 2423 . 2  |-  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
)
1211a1i 9 1  |-  ( A  e.  Q.  ->  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    e. wcel 1434   {cab 2069   A.wral 2353   class class class wbr 3805   Q.cnq 6584    <Q cltq 6589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-eprel 4072  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-irdg 6039  df-oadd 6089  df-omul 6090  df-er 6193  df-ec 6195  df-qs 6199  df-ni 6608  df-mi 6610  df-lti 6611  df-enq 6651  df-nqqs 6652  df-ltnqqs 6657
This theorem is referenced by:  nqprxx  6850
  Copyright terms: Public domain W3C validator