![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > numaddc | Unicode version |
Description: Add two decimal integers
![]() ![]() |
Ref | Expression |
---|---|
numma.1 |
![]() ![]() ![]() ![]() |
numma.2 |
![]() ![]() ![]() ![]() |
numma.3 |
![]() ![]() ![]() ![]() |
numma.4 |
![]() ![]() ![]() ![]() |
numma.5 |
![]() ![]() ![]() ![]() |
numma.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
numma.7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
numaddc.8 |
![]() ![]() ![]() ![]() |
numaddc.9 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
numaddc.10 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
numaddc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.6 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | numma.1 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
3 | numma.2 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
4 | numma.3 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | numcl 8570 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | eqeltri 2152 |
. . . . 5
![]() ![]() ![]() ![]() |
7 | 6 | nn0cni 8367 |
. . . 4
![]() ![]() ![]() ![]() |
8 | 7 | mulid1i 7183 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | oveq1i 5553 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | numma.4 |
. . 3
![]() ![]() ![]() ![]() | |
11 | numma.5 |
. . 3
![]() ![]() ![]() ![]() | |
12 | numma.7 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 1nn0 8371 |
. . 3
![]() ![]() ![]() ![]() | |
14 | numaddc.8 |
. . 3
![]() ![]() ![]() ![]() | |
15 | 3 | nn0cni 8367 |
. . . . . 6
![]() ![]() ![]() ![]() |
16 | 15 | mulid1i 7183 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16 | oveq1i 5553 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 10 | nn0cni 8367 |
. . . . 5
![]() ![]() ![]() ![]() |
19 | ax-1cn 7131 |
. . . . 5
![]() ![]() ![]() ![]() | |
20 | 15, 18, 19 | addassi 7189 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | numaddc.9 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
22 | 17, 20, 21 | 3eqtr2i 2108 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 4 | nn0cni 8367 |
. . . . . 6
![]() ![]() ![]() ![]() |
24 | 23 | mulid1i 7183 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 24 | oveq1i 5553 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | numaddc.10 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 25, 26 | eqtri 2102 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 2, 3, 4, 10, 11, 1, 12, 13, 14, 13, 22, 27 | nummac 8602 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 9, 28 | eqtr3i 2104 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-addcom 7138 ax-mulcom 7139 ax-addass 7140 ax-mulass 7141 ax-distr 7142 ax-i2m1 7143 ax-1rid 7145 ax-0id 7146 ax-rnegex 7147 ax-cnre 7149 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-br 3794 df-opab 3848 df-id 4056 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-iota 4897 df-fun 4934 df-fv 4940 df-riota 5499 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-sub 7348 df-inn 8107 df-n0 8356 |
This theorem is referenced by: decaddc 8612 |
Copyright terms: Public domain | W3C validator |