ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oasuc Unicode version

Theorem oasuc 6353
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )

Proof of Theorem oasuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 suceloni 4412 . . . . . 6  |-  ( B  e.  On  ->  suc  B  e.  On )
2 oav2 6352 . . . . . 6  |-  ( ( A  e.  On  /\  suc  B  e.  On )  ->  ( A  +o  suc  B )  =  ( A  u.  U_ x  e.  suc  B  suc  ( A  +o  x ) ) )
31, 2sylan2 284 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( A  u.  U_ x  e. 
suc  B  suc  ( A  +o  x ) ) )
4 df-suc 4288 . . . . . . . . . 10  |-  suc  B  =  ( B  u.  { B } )
5 iuneq1 3821 . . . . . . . . . 10  |-  ( suc 
B  =  ( B  u.  { B }
)  ->  U_ x  e. 
suc  B  suc  ( A  +o  x )  = 
U_ x  e.  ( B  u.  { B } ) suc  ( A  +o  x ) )
64, 5ax-mp 5 . . . . . . . . 9  |-  U_ x  e.  suc  B  suc  ( A  +o  x )  = 
U_ x  e.  ( B  u.  { B } ) suc  ( A  +o  x )
7 iunxun 3887 . . . . . . . . 9  |-  U_ x  e.  ( B  u.  { B } ) suc  ( A  +o  x )  =  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
U_ x  e.  { B } suc  ( A  +o  x ) )
86, 7eqtri 2158 . . . . . . . 8  |-  U_ x  e.  suc  B  suc  ( A  +o  x )  =  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
U_ x  e.  { B } suc  ( A  +o  x ) )
9 oveq2 5775 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( A  +o  x )  =  ( A  +o  B
) )
10 suceq 4319 . . . . . . . . . . 11  |-  ( ( A  +o  x )  =  ( A  +o  B )  ->  suc  ( A  +o  x
)  =  suc  ( A  +o  B ) )
119, 10syl 14 . . . . . . . . . 10  |-  ( x  =  B  ->  suc  ( A  +o  x
)  =  suc  ( A  +o  B ) )
1211iunxsng 3883 . . . . . . . . 9  |-  ( B  e.  On  ->  U_ x  e.  { B } suc  ( A  +o  x
)  =  suc  ( A  +o  B ) )
1312uneq2d 3225 . . . . . . . 8  |-  ( B  e.  On  ->  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  U_ x  e.  { B } suc  ( A  +o  x
) )  =  (
U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) )
148, 13syl5eq 2182 . . . . . . 7  |-  ( B  e.  On  ->  U_ x  e.  suc  B  suc  ( A  +o  x )  =  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
suc  ( A  +o  B ) ) )
1514uneq2d 3225 . . . . . 6  |-  ( B  e.  On  ->  ( A  u.  U_ x  e. 
suc  B  suc  ( A  +o  x ) )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) ) )
1615adantl 275 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  U_ x  e.  suc  B  suc  ( A  +o  x
) )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) ) )
173, 16eqtrd 2170 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x )  u. 
suc  ( A  +o  B ) ) ) )
18 unass 3228 . . . 4  |-  ( ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) )  u.  suc  ( A  +o  B ) )  =  ( A  u.  ( U_ x  e.  B  suc  ( A  +o  x
)  u.  suc  ( A  +o  B ) ) )
1917, 18syl6eqr 2188 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) )  u.  suc  ( A  +o  B ) ) )
20 oav2 6352 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) ) )
2120uneq1d 3224 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  +o  B )  u.  suc  ( A  +o  B
) )  =  ( ( A  u.  U_ x  e.  B  suc  ( A  +o  x
) )  u.  suc  ( A  +o  B
) ) )
2219, 21eqtr4d 2173 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  ( ( A  +o  B )  u.  suc  ( A  +o  B ) ) )
23 sssucid 4332 . . 3  |-  ( A  +o  B )  C_  suc  ( A  +o  B
)
24 ssequn1 3241 . . 3  |-  ( ( A  +o  B ) 
C_  suc  ( A  +o  B )  <->  ( ( A  +o  B )  u. 
suc  ( A  +o  B ) )  =  suc  ( A  +o  B ) )
2523, 24mpbi 144 . 2  |-  ( ( A  +o  B )  u.  suc  ( A  +o  B ) )  =  suc  ( A  +o  B )
2622, 25syl6eq 2186 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc  B )  =  suc  ( A  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    u. cun 3064    C_ wss 3066   {csn 3522   U_ciun 3808   Oncon0 4280   suc csuc 4282  (class class class)co 5767    +o coa 6303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-oadd 6310
This theorem is referenced by:  onasuc  6355  nnaordi  6397
  Copyright terms: Public domain W3C validator