ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddennn Unicode version

Theorem oddennn 10830
Description: There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
oddennn  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN

Proof of Theorem oddennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 8182 . . 3  |-  NN  e.  _V
21rabex 3942 . 2  |-  { z  e.  NN  |  -.  2  ||  z }  e.  _V
3 elrabi 2754 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  x  e.  NN )
43peano2nnd 8191 . . 3  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  (
x  +  1 )  e.  NN )
5 breq2 3809 . . . . . . 7  |-  ( z  =  x  ->  (
2  ||  z  <->  2  ||  x ) )
65notbid 625 . . . . . 6  |-  ( z  =  x  ->  ( -.  2  ||  z  <->  -.  2  ||  x ) )
76elrab 2757 . . . . 5  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  <->  ( x  e.  NN  /\  -.  2  ||  x ) )
87simprbi 269 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  -.  2  ||  x )
93nnzd 8619 . . . . 5  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  x  e.  ZZ )
10 oddp1even 10501 . . . . 5  |-  ( x  e.  ZZ  ->  ( -.  2  ||  x  <->  2  ||  ( x  +  1
) ) )
119, 10syl 14 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  ( -.  2  ||  x  <->  2  ||  ( x  +  1
) ) )
128, 11mpbid 145 . . 3  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  2  ||  ( x  +  1 ) )
13 nnehalf 10529 . . 3  |-  ( ( ( x  +  1 )  e.  NN  /\  2  ||  ( x  + 
1 ) )  -> 
( ( x  + 
1 )  /  2
)  e.  NN )
144, 12, 13syl2anc 403 . 2  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  (
( x  +  1 )  /  2 )  e.  NN )
15 nnz 8521 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  ZZ )
16 2z 8530 . . . . . . 7  |-  2  e.  ZZ
1716a1i 9 . . . . . 6  |-  ( y  e.  NN  ->  2  e.  ZZ )
1815, 17zmulcld 8626 . . . . 5  |-  ( y  e.  NN  ->  (
y  x.  2 )  e.  ZZ )
19 peano2zm 8540 . . . . 5  |-  ( ( y  x.  2 )  e.  ZZ  ->  (
( y  x.  2 )  -  1 )  e.  ZZ )
2018, 19syl 14 . . . 4  |-  ( y  e.  NN  ->  (
( y  x.  2 )  -  1 )  e.  ZZ )
21 1e2m1 8294 . . . . 5  |-  1  =  ( 2  -  1 )
2217zred 8620 . . . . . 6  |-  ( y  e.  NN  ->  2  e.  RR )
23 nnre 8183 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  RR )
2423, 22remulcld 7281 . . . . . 6  |-  ( y  e.  NN  ->  (
y  x.  2 )  e.  RR )
25 1red 7266 . . . . . 6  |-  ( y  e.  NN  ->  1  e.  RR )
26 0le2 8266 . . . . . . . 8  |-  0  <_  2
2726a1i 9 . . . . . . 7  |-  ( y  e.  NN  ->  0  <_  2 )
28 nnge1 8199 . . . . . . 7  |-  ( y  e.  NN  ->  1  <_  y )
2922, 23, 27, 28lemulge12d 8153 . . . . . 6  |-  ( y  e.  NN  ->  2  <_  ( y  x.  2 ) )
3022, 24, 25, 29lesub1dd 7798 . . . . 5  |-  ( y  e.  NN  ->  (
2  -  1 )  <_  ( ( y  x.  2 )  - 
1 ) )
3121, 30syl5eqbr 3838 . . . 4  |-  ( y  e.  NN  ->  1  <_  ( ( y  x.  2 )  -  1 ) )
32 elnnz1 8525 . . . 4  |-  ( ( ( y  x.  2 )  -  1 )  e.  NN  <->  ( (
( y  x.  2 )  -  1 )  e.  ZZ  /\  1  <_  ( ( y  x.  2 )  -  1 ) ) )
3320, 31, 32sylanbrc 408 . . 3  |-  ( y  e.  NN  ->  (
( y  x.  2 )  -  1 )  e.  NN )
34 dvdsmul2 10444 . . . . 5  |-  ( ( y  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( y  x.  2 ) )
3515, 16, 34sylancl 404 . . . 4  |-  ( y  e.  NN  ->  2  ||  ( y  x.  2 ) )
36 oddm1even 10500 . . . . . 6  |-  ( ( y  x.  2 )  e.  ZZ  ->  ( -.  2  ||  ( y  x.  2 )  <->  2  ||  ( ( y  x.  2 )  -  1 ) ) )
3718, 36syl 14 . . . . 5  |-  ( y  e.  NN  ->  ( -.  2  ||  ( y  x.  2 )  <->  2  ||  ( ( y  x.  2 )  -  1 ) ) )
3837biimprd 156 . . . 4  |-  ( y  e.  NN  ->  (
2  ||  ( (
y  x.  2 )  -  1 )  ->  -.  2  ||  ( y  x.  2 ) ) )
3935, 38mt2d 588 . . 3  |-  ( y  e.  NN  ->  -.  2  ||  ( ( y  x.  2 )  - 
1 ) )
40 breq2 3809 . . . . 5  |-  ( z  =  ( ( y  x.  2 )  - 
1 )  ->  (
2  ||  z  <->  2  ||  ( ( y  x.  2 )  -  1 ) ) )
4140notbid 625 . . . 4  |-  ( z  =  ( ( y  x.  2 )  - 
1 )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( ( y  x.  2 )  -  1 ) ) )
4241elrab 2757 . . 3  |-  ( ( ( y  x.  2 )  -  1 )  e.  { z  e.  NN  |  -.  2  ||  z }  <->  ( (
( y  x.  2 )  -  1 )  e.  NN  /\  -.  2  ||  ( ( y  x.  2 )  - 
1 ) ) )
4333, 39, 42sylanbrc 408 . 2  |-  ( y  e.  NN  ->  (
( y  x.  2 )  -  1 )  e.  { z  e.  NN  |  -.  2  ||  z } )
44 eqcom 2085 . . 3  |-  ( ( ( x  +  1 )  /  2 )  =  y  <->  y  =  ( ( x  + 
1 )  /  2
) )
453adantr 270 . . . . . . 7  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  x  e.  NN )
4645nncnd 8190 . . . . . 6  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  x  e.  CC )
47 1cnd 7267 . . . . . 6  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  1  e.  CC )
4846, 47addcld 7270 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( x  +  1 )  e.  CC )
49 simpr 108 . . . . . 6  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  y  e.  NN )
5049nncnd 8190 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  y  e.  CC )
51 2cnd 8249 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  2  e.  CC )
52 2ap0 8269 . . . . . 6  |-  2 #  0
5352a1i 9 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  2 #  0 )
5448, 50, 51, 53divmulap3d 8048 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( ( ( x  +  1 )  / 
2 )  =  y  <-> 
( x  +  1 )  =  ( y  x.  2 ) ) )
5550, 51mulcld 7271 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( y  x.  2 )  e.  CC )
5646, 47, 55addlsub 7611 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( ( x  + 
1 )  =  ( y  x.  2 )  <-> 
x  =  ( ( y  x.  2 )  -  1 ) ) )
5754, 56bitrd 186 . . 3  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( ( ( x  +  1 )  / 
2 )  =  y  <-> 
x  =  ( ( y  x.  2 )  -  1 ) ) )
5844, 57syl5rbbr 193 . 2  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( x  =  ( ( y  x.  2 )  -  1 )  <-> 
y  =  ( ( x  +  1 )  /  2 ) ) )
592, 1, 14, 43, 58en3i 6340 1  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   {crab 2357   class class class wbr 3805  (class class class)co 5564    ~~ cen 6307   0cc0 7113   1c1 7114    + caddc 7116    x. cmul 7118    <_ cle 7286    - cmin 7416   # cap 7818    / cdiv 7897   NNcn 8176   2c2 8226   ZZcz 8502    || cdvds 10421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7199  ax-resscn 7200  ax-1cn 7201  ax-1re 7202  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-mulrcl 7207  ax-addcom 7208  ax-mulcom 7209  ax-addass 7210  ax-mulass 7211  ax-distr 7212  ax-i2m1 7213  ax-0lt1 7214  ax-1rid 7215  ax-0id 7216  ax-rnegex 7217  ax-precex 7218  ax-cnre 7219  ax-pre-ltirr 7220  ax-pre-ltwlin 7221  ax-pre-lttrn 7222  ax-pre-apti 7223  ax-pre-ltadd 7224  ax-pre-mulgt0 7225  ax-pre-mulext 7226
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-xor 1308  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-en 6310  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291  df-sub 7418  df-neg 7419  df-reap 7812  df-ap 7819  df-div 7898  df-inn 8177  df-2 8235  df-n0 8426  df-z 8503  df-dvds 10422
This theorem is referenced by:  xpnnen  10832  unennn  10835
  Copyright terms: Public domain W3C validator