ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddm1even Unicode version

Theorem oddm1even 11561
Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
oddm1even  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  2  ||  ( N  -  1
) ) )

Proof of Theorem oddm1even
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . 6  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  N  e.  ZZ )
21zcnd 9167 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  N  e.  CC )
3 1cnd 7775 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  1  e.  CC )
4 2cnd 8786 . . . . . 6  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  2  e.  CC )
5 simpr 109 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  n  e.  ZZ )
65zcnd 9167 . . . . . 6  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  n  e.  CC )
74, 6mulcld 7779 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  x.  n
)  e.  CC )
82, 3, 7subadd2d 8085 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( N  - 
1 )  =  ( 2  x.  n )  <-> 
( ( 2  x.  n )  +  1 )  =  N ) )
9 eqcom 2139 . . . . 5  |-  ( ( N  -  1 )  =  ( 2  x.  n )  <->  ( 2  x.  n )  =  ( N  -  1 ) )
104, 6mulcomd 7780 . . . . . 6  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  x.  n
)  =  ( n  x.  2 ) )
1110eqeq1d 2146 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( 2  x.  n )  =  ( N  -  1 )  <-> 
( n  x.  2 )  =  ( N  -  1 ) ) )
129, 11syl5bb 191 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( N  - 
1 )  =  ( 2  x.  n )  <-> 
( n  x.  2 )  =  ( N  -  1 ) ) )
138, 12bitr3d 189 . . 3  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  <-> 
( n  x.  2 )  =  ( N  -  1 ) ) )
1413rexbidva 2432 . 2  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  E. n  e.  ZZ  ( n  x.  2 )  =  ( N  -  1 ) ) )
15 odd2np1 11559 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
16 2z 9075 . . 3  |-  2  e.  ZZ
17 peano2zm 9085 . . 3  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
18 divides 11484 . . 3  |-  ( ( 2  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( 2  ||  ( N  -  1
)  <->  E. n  e.  ZZ  ( n  x.  2
)  =  ( N  -  1 ) ) )
1916, 17, 18sylancr 410 . 2  |-  ( N  e.  ZZ  ->  (
2  ||  ( N  -  1 )  <->  E. n  e.  ZZ  ( n  x.  2 )  =  ( N  -  1 ) ) )
2014, 15, 193bitr4d 219 1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  2  ||  ( N  -  1
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2415   class class class wbr 3924  (class class class)co 5767   1c1 7614    + caddc 7616    x. cmul 7618    - cmin 7926   2c2 8764   ZZcz 9047    || cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-dvds 11483
This theorem is referenced by:  oddp1even  11562  n2dvds3  11601  oddennn  11894
  Copyright terms: Public domain W3C validator