ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeicl Unicode version

Theorem oeicl 6106
Description: Closure law for ordinal exponentiation. (Contributed by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
oeicl  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A𝑜  B )  e.  On )

Proof of Theorem oeicl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oeiv 6100 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A𝑜  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
2 1on 6072 . . . 4  |-  1o  e.  On
32a1i 9 . . 3  |-  ( A  e.  On  ->  1o  e.  On )
4 vex 2605 . . . . . . 7  |-  y  e. 
_V
5 omcl 6105 . . . . . . 7  |-  ( ( y  e.  On  /\  A  e.  On )  ->  ( y  .o  A
)  e.  On )
6 oveq1 5550 . . . . . . . 8  |-  ( x  =  y  ->  (
x  .o  A )  =  ( y  .o  A ) )
7 eqid 2082 . . . . . . . 8  |-  ( x  e.  _V  |->  ( x  .o  A ) )  =  ( x  e. 
_V  |->  ( x  .o  A ) )
86, 7fvmptg 5280 . . . . . . 7  |-  ( ( y  e.  _V  /\  ( y  .o  A
)  e.  On )  ->  ( ( x  e.  _V  |->  ( x  .o  A ) ) `
 y )  =  ( y  .o  A
) )
94, 5, 8sylancr 405 . . . . . 6  |-  ( ( y  e.  On  /\  A  e.  On )  ->  ( ( x  e. 
_V  |->  ( x  .o  A ) ) `  y )  =  ( y  .o  A ) )
109, 5eqeltrd 2156 . . . . 5  |-  ( ( y  e.  On  /\  A  e.  On )  ->  ( ( x  e. 
_V  |->  ( x  .o  A ) ) `  y )  e.  On )
1110ancoms 264 . . . 4  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( x  e. 
_V  |->  ( x  .o  A ) ) `  y )  e.  On )
1211ralrimiva 2435 . . 3  |-  ( A  e.  On  ->  A. y  e.  On  ( ( x  e.  _V  |->  ( x  .o  A ) ) `
 y )  e.  On )
133, 12rdgon 6035 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 B )  e.  On )
141, 13eqeltrd 2156 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A𝑜  B )  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   _Vcvv 2602    |-> cmpt 3847   Oncon0 4126   ` cfv 4932  (class class class)co 5543   reccrdg 6018   1oc1o 6058    .o comu 6063   ↑𝑜 coei 6064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-suc 4134  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-oadd 6069  df-omul 6070  df-oexpi 6071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator