ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oexpneg Unicode version

Theorem oexpneg 10410
Description: The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.)
Assertion
Ref Expression
oexpneg  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( -u A ^ N
)  =  -u ( A ^ N ) )

Proof of Theorem oexpneg
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nnz 8440 . . . . 5  |-  ( N  e.  NN  ->  N  e.  ZZ )
2 odd2np1 10406 . . . . 5  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
31, 2syl 14 . . . 4  |-  ( N  e.  NN  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
43biimpa 290 . . 3  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
543adant1 957 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6 simpl1 942 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  A  e.  CC )
7 simprr 499 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( 2  x.  n )  +  1 )  =  N )
8 simpl2 943 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  N  e.  NN )
98nncnd 8109 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  N  e.  CC )
10 1cnd 7186 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
1  e.  CC )
11 2z 8449 . . . . . . . . . . 11  |-  2  e.  ZZ
12 simprl 498 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  n  e.  ZZ )
13 zmulcl 8474 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  x.  n
)  e.  ZZ )
1411, 12, 13sylancr 405 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( 2  x.  n
)  e.  ZZ )
1514zcnd 8540 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( 2  x.  n
)  e.  CC )
169, 10, 15subadd2d 7494 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( N  - 
1 )  =  ( 2  x.  n )  <-> 
( ( 2  x.  n )  +  1 )  =  N ) )
177, 16mpbird 165 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( N  -  1 )  =  ( 2  x.  n ) )
18 nnm1nn0 8385 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
198, 18syl 14 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( N  -  1 )  e.  NN0 )
2017, 19eqeltrrd 2157 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( 2  x.  n
)  e.  NN0 )
216, 20expcld 9691 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( A ^ (
2  x.  n ) )  e.  CC )
2221, 6mulneg2d 7572 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( A ^
( 2  x.  n
) )  x.  -u A
)  =  -u (
( A ^ (
2  x.  n ) )  x.  A ) )
23 sqneg 9621 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
246, 23syl 14 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ 2 )  =  ( A ^ 2 ) )
2524oveq1d 5552 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( -u A ^ 2 ) ^
n )  =  ( ( A ^ 2 ) ^ n ) )
266negcld 7462 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  -u A  e.  CC )
27 2re 8165 . . . . . . . . . . 11  |-  2  e.  RR
2827a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
2  e.  RR )
2912zred 8539 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  n  e.  RR )
30 2pos 8186 . . . . . . . . . . 11  |-  0  <  2
3130a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
0  <  2 )
3220nn0ge0d 8400 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
0  <_  ( 2  x.  n ) )
33 prodge0 7988 . . . . . . . . . 10  |-  ( ( ( 2  e.  RR  /\  n  e.  RR )  /\  ( 0  <  2  /\  0  <_ 
( 2  x.  n
) ) )  -> 
0  <_  n )
3428, 29, 31, 32, 33syl22anc 1171 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
0  <_  n )
35 elnn0z 8434 . . . . . . . . 9  |-  ( n  e.  NN0  <->  ( n  e.  ZZ  /\  0  <_  n ) )
3612, 34, 35sylanbrc 408 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  n  e.  NN0 )
37 2nn0 8361 . . . . . . . . 9  |-  2  e.  NN0
3837a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
2  e.  NN0 )
3926, 36, 38expmuld 9694 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ (
2  x.  n ) )  =  ( (
-u A ^ 2 ) ^ n ) )
406, 36, 38expmuld 9694 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( A ^ (
2  x.  n ) )  =  ( ( A ^ 2 ) ^ n ) )
4125, 39, 403eqtr4d 2124 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ (
2  x.  n ) )  =  ( A ^ ( 2  x.  n ) ) )
4241oveq1d 5552 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( -u A ^ ( 2  x.  n ) )  x.  -u A )  =  ( ( A ^ (
2  x.  n ) )  x.  -u A
) )
4326, 20expp1d 9692 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ (
( 2  x.  n
)  +  1 ) )  =  ( (
-u A ^ (
2  x.  n ) )  x.  -u A
) )
447oveq2d 5553 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ (
( 2  x.  n
)  +  1 ) )  =  ( -u A ^ N ) )
4543, 44eqtr3d 2116 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( -u A ^ ( 2  x.  n ) )  x.  -u A )  =  (
-u A ^ N
) )
4642, 45eqtr3d 2116 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( A ^
( 2  x.  n
) )  x.  -u A
)  =  ( -u A ^ N ) )
4722, 46eqtr3d 2116 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  -u ( ( A ^
( 2  x.  n
) )  x.  A
)  =  ( -u A ^ N ) )
486, 20expp1d 9692 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( A ^ (
( 2  x.  n
)  +  1 ) )  =  ( ( A ^ ( 2  x.  n ) )  x.  A ) )
497oveq2d 5553 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( A ^ (
( 2  x.  n
)  +  1 ) )  =  ( A ^ N ) )
5048, 49eqtr3d 2116 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( A ^
( 2  x.  n
) )  x.  A
)  =  ( A ^ N ) )
5150negeqd 7359 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  -u ( ( A ^
( 2  x.  n
) )  x.  A
)  =  -u ( A ^ N ) )
5247, 51eqtr3d 2116 . 2  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ N
)  =  -u ( A ^ N ) )
535, 52rexlimddv 2482 1  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( -u A ^ N
)  =  -u ( A ^ N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   E.wrex 2350   class class class wbr 3787  (class class class)co 5537   CCcc 7030   RRcr 7031   0cc0 7032   1c1 7033    + caddc 7035    x. cmul 7037    < clt 7204    <_ cle 7205    - cmin 7335   -ucneg 7336   NNcn 8095   2c2 8145   NN0cn0 8344   ZZcz 8421   ^cexp 9561    || cdvds 10329
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331  ax-cnex 7118  ax-resscn 7119  ax-1cn 7120  ax-1re 7121  ax-icn 7122  ax-addcl 7123  ax-addrcl 7124  ax-mulcl 7125  ax-mulrcl 7126  ax-addcom 7127  ax-mulcom 7128  ax-addass 7129  ax-mulass 7130  ax-distr 7131  ax-i2m1 7132  ax-0lt1 7133  ax-1rid 7134  ax-0id 7135  ax-rnegex 7136  ax-precex 7137  ax-cnre 7138  ax-pre-ltirr 7139  ax-pre-ltwlin 7140  ax-pre-lttrn 7141  ax-pre-apti 7142  ax-pre-ltadd 7143  ax-pre-mulgt0 7144  ax-pre-mulext 7145
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-xor 1308  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-if 3354  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-tr 3878  df-id 4050  df-po 4053  df-iso 4054  df-iord 4123  df-on 4125  df-ilim 4126  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-frec 6034  df-pnf 7206  df-mnf 7207  df-xr 7208  df-ltxr 7209  df-le 7210  df-sub 7337  df-neg 7338  df-reap 7731  df-ap 7738  df-div 7817  df-inn 8096  df-2 8154  df-n0 8345  df-z 8422  df-uz 8690  df-iseq 9511  df-iexp 9562  df-dvds 10330
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator