ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  off Unicode version

Theorem off 5755
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
off.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  T ) )  -> 
( x R y )  e.  U )
off.2  |-  ( ph  ->  F : A --> S )
off.3  |-  ( ph  ->  G : B --> T )
off.4  |-  ( ph  ->  A  e.  V )
off.5  |-  ( ph  ->  B  e.  W )
off.6  |-  ( A  i^i  B )  =  C
Assertion
Ref Expression
off  |-  ( ph  ->  ( F  oF R G ) : C --> U )
Distinct variable groups:    y, G    x, y, ph    x, S, y    x, T, y    x, F, y   
x, R, y    x, U, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    G( x)    V( x, y)    W( x, y)

Proof of Theorem off
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 off.2 . . . . 5  |-  ( ph  ->  F : A --> S )
2 off.6 . . . . . . 7  |-  ( A  i^i  B )  =  C
3 inss1 3193 . . . . . . 7  |-  ( A  i^i  B )  C_  A
42, 3eqsstr3i 3031 . . . . . 6  |-  C  C_  A
54sseli 2996 . . . . 5  |-  ( z  e.  C  ->  z  e.  A )
6 ffvelrn 5332 . . . . 5  |-  ( ( F : A --> S  /\  z  e.  A )  ->  ( F `  z
)  e.  S )
71, 5, 6syl2an 283 . . . 4  |-  ( (
ph  /\  z  e.  C )  ->  ( F `  z )  e.  S )
8 off.3 . . . . 5  |-  ( ph  ->  G : B --> T )
9 inss2 3194 . . . . . . 7  |-  ( A  i^i  B )  C_  B
102, 9eqsstr3i 3031 . . . . . 6  |-  C  C_  B
1110sseli 2996 . . . . 5  |-  ( z  e.  C  ->  z  e.  B )
12 ffvelrn 5332 . . . . 5  |-  ( ( G : B --> T  /\  z  e.  B )  ->  ( G `  z
)  e.  T )
138, 11, 12syl2an 283 . . . 4  |-  ( (
ph  /\  z  e.  C )  ->  ( G `  z )  e.  T )
14 off.1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  T ) )  -> 
( x R y )  e.  U )
1514ralrimivva 2444 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  T  ( x R y )  e.  U )
1615adantr 270 . . . 4  |-  ( (
ph  /\  z  e.  C )  ->  A. x  e.  S  A. y  e.  T  ( x R y )  e.  U )
17 oveq1 5550 . . . . . 6  |-  ( x  =  ( F `  z )  ->  (
x R y )  =  ( ( F `
 z ) R y ) )
1817eleq1d 2148 . . . . 5  |-  ( x  =  ( F `  z )  ->  (
( x R y )  e.  U  <->  ( ( F `  z ) R y )  e.  U ) )
19 oveq2 5551 . . . . . 6  |-  ( y  =  ( G `  z )  ->  (
( F `  z
) R y )  =  ( ( F `
 z ) R ( G `  z
) ) )
2019eleq1d 2148 . . . . 5  |-  ( y  =  ( G `  z )  ->  (
( ( F `  z ) R y )  e.  U  <->  ( ( F `  z ) R ( G `  z ) )  e.  U ) )
2118, 20rspc2va 2715 . . . 4  |-  ( ( ( ( F `  z )  e.  S  /\  ( G `  z
)  e.  T )  /\  A. x  e.  S  A. y  e.  T  ( x R y )  e.  U
)  ->  ( ( F `  z ) R ( G `  z ) )  e.  U )
227, 13, 16, 21syl21anc 1169 . . 3  |-  ( (
ph  /\  z  e.  C )  ->  (
( F `  z
) R ( G `
 z ) )  e.  U )
23 eqid 2082 . . 3  |-  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) )  =  ( z  e.  C  |->  ( ( F `
 z ) R ( G `  z
) ) )
2422, 23fmptd 5354 . 2  |-  ( ph  ->  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) ) : C --> U )
25 ffn 5077 . . . . 5  |-  ( F : A --> S  ->  F  Fn  A )
261, 25syl 14 . . . 4  |-  ( ph  ->  F  Fn  A )
27 ffn 5077 . . . . 5  |-  ( G : B --> T  ->  G  Fn  B )
288, 27syl 14 . . . 4  |-  ( ph  ->  G  Fn  B )
29 off.4 . . . 4  |-  ( ph  ->  A  e.  V )
30 off.5 . . . 4  |-  ( ph  ->  B  e.  W )
31 eqidd 2083 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  =  ( F `  z ) )
32 eqidd 2083 . . . 4  |-  ( (
ph  /\  z  e.  B )  ->  ( G `  z )  =  ( G `  z ) )
3326, 28, 29, 30, 2, 31, 32offval 5750 . . 3  |-  ( ph  ->  ( F  oF R G )  =  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) ) )
3433feq1d 5065 . 2  |-  ( ph  ->  ( ( F  oF R G ) : C --> U  <->  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) ) : C --> U ) )
3524, 34mpbird 165 1  |-  ( ph  ->  ( F  oF R G ) : C --> U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   A.wral 2349    i^i cin 2973    |-> cmpt 3847    Fn wfn 4927   -->wf 4928   ` cfv 4932  (class class class)co 5543    oFcof 5741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-setind 4288
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-of 5743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator