ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offval3 Unicode version

Theorem offval3 6025
Description: General value of  ( F  oF R G ) with no assumptions on functionality of  F and  G. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offval3  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) ) )
Distinct variable groups:    x, F    x, G    x, V    x, W    x, R

Proof of Theorem offval3
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2692 . . 3  |-  ( F  e.  V  ->  F  e.  _V )
21adantr 274 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  F  e.  _V )
3 elex 2692 . . 3  |-  ( G  e.  W  ->  G  e.  _V )
43adantl 275 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  G  e.  _V )
5 dmexg 4798 . . . 4  |-  ( F  e.  V  ->  dom  F  e.  _V )
6 inex1g 4059 . . . 4  |-  ( dom 
F  e.  _V  ->  ( dom  F  i^i  dom  G )  e.  _V )
7 mptexg 5638 . . . 4  |-  ( ( dom  F  i^i  dom  G )  e.  _V  ->  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )
85, 6, 73syl 17 . . 3  |-  ( F  e.  V  ->  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )
98adantr 274 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) )  e. 
_V )
10 dmeq 4734 . . . . 5  |-  ( a  =  F  ->  dom  a  =  dom  F )
11 dmeq 4734 . . . . 5  |-  ( b  =  G  ->  dom  b  =  dom  G )
1210, 11ineqan12d 3274 . . . 4  |-  ( ( a  =  F  /\  b  =  G )  ->  ( dom  a  i^i 
dom  b )  =  ( dom  F  i^i  dom 
G ) )
13 fveq1 5413 . . . . 5  |-  ( a  =  F  ->  (
a `  x )  =  ( F `  x ) )
14 fveq1 5413 . . . . 5  |-  ( b  =  G  ->  (
b `  x )  =  ( G `  x ) )
1513, 14oveqan12d 5786 . . . 4  |-  ( ( a  =  F  /\  b  =  G )  ->  ( ( a `  x ) R ( b `  x ) )  =  ( ( F `  x ) R ( G `  x ) ) )
1612, 15mpteq12dv 4005 . . 3  |-  ( ( a  =  F  /\  b  =  G )  ->  ( x  e.  ( dom  a  i^i  dom  b )  |->  ( ( a `  x ) R ( b `  x ) ) )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x ) R ( G `  x ) ) ) )
17 df-of 5975 . . 3  |-  oF R  =  ( a  e.  _V ,  b  e.  _V  |->  ( x  e.  ( dom  a  i^i  dom  b )  |->  ( ( a `  x
) R ( b `
 x ) ) ) )
1816, 17ovmpoga 5893 . 2  |-  ( ( F  e.  _V  /\  G  e.  _V  /\  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x ) R ( G `  x ) ) ) )
192, 4, 9, 18syl3anc 1216 1  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2681    i^i cin 3065    |-> cmpt 3984   dom cdm 4534   ` cfv 5118  (class class class)co 5767    oFcof 5973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-of 5975
This theorem is referenced by:  offres  6026
  Copyright terms: Public domain W3C validator