ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofrfval Unicode version

Theorem ofrfval 5983
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
offval.6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
offval.7  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
Assertion
Ref Expression
ofrfval  |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  S  C R D ) )
Distinct variable groups:    x, A    x, F    x, G    ph, x    x, S    x, R
Allowed substitution hints:    B( x)    C( x)    D( x)    V( x)    W( x)

Proof of Theorem ofrfval
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4  |-  ( ph  ->  F  Fn  A )
2 offval.3 . . . 4  |-  ( ph  ->  A  e.  V )
3 fnex 5635 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  V )  ->  F  e.  _V )
41, 2, 3syl2anc 408 . . 3  |-  ( ph  ->  F  e.  _V )
5 offval.2 . . . 4  |-  ( ph  ->  G  Fn  B )
6 offval.4 . . . 4  |-  ( ph  ->  B  e.  W )
7 fnex 5635 . . . 4  |-  ( ( G  Fn  B  /\  B  e.  W )  ->  G  e.  _V )
85, 6, 7syl2anc 408 . . 3  |-  ( ph  ->  G  e.  _V )
9 dmeq 4734 . . . . . 6  |-  ( f  =  F  ->  dom  f  =  dom  F )
10 dmeq 4734 . . . . . 6  |-  ( g  =  G  ->  dom  g  =  dom  G )
119, 10ineqan12d 3274 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( dom  f  i^i 
dom  g )  =  ( dom  F  i^i  dom 
G ) )
12 fveq1 5413 . . . . . 6  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
13 fveq1 5413 . . . . . 6  |-  ( g  =  G  ->  (
g `  x )  =  ( G `  x ) )
1412, 13breqan12d 3940 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  x ) R ( g `  x )  <-> 
( F `  x
) R ( G `
 x ) ) )
1511, 14raleqbidv 2636 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  ( dom  f  i^i 
dom  g ) ( f `  x ) R ( g `  x )  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
) ) )
16 df-ofr 5976 . . . 4  |-  oR R  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) R ( g `
 x ) }
1715, 16brabga 4181 . . 3  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F  oR R G  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
) ) )
184, 8, 17syl2anc 408 . 2  |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
) ) )
19 fndm 5217 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
201, 19syl 14 . . . . 5  |-  ( ph  ->  dom  F  =  A )
21 fndm 5217 . . . . . 6  |-  ( G  Fn  B  ->  dom  G  =  B )
225, 21syl 14 . . . . 5  |-  ( ph  ->  dom  G  =  B )
2320, 22ineq12d 3273 . . . 4  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  ( A  i^i  B ) )
24 offval.5 . . . 4  |-  ( A  i^i  B )  =  S
2523, 24syl6eq 2186 . . 3  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  S )
2625raleqdv 2630 . 2  |-  ( ph  ->  ( A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
)  <->  A. x  e.  S  ( F `  x ) R ( G `  x ) ) )
27 inss1 3291 . . . . . . 7  |-  ( A  i^i  B )  C_  A
2824, 27eqsstrri 3125 . . . . . 6  |-  S  C_  A
2928sseli 3088 . . . . 5  |-  ( x  e.  S  ->  x  e.  A )
30 offval.6 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
3129, 30sylan2 284 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  ( F `  x )  =  C )
32 inss2 3292 . . . . . . 7  |-  ( A  i^i  B )  C_  B
3324, 32eqsstrri 3125 . . . . . 6  |-  S  C_  B
3433sseli 3088 . . . . 5  |-  ( x  e.  S  ->  x  e.  B )
35 offval.7 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
3634, 35sylan2 284 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  ( G `  x )  =  D )
3731, 36breq12d 3937 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  (
( F `  x
) R ( G `
 x )  <->  C R D ) )
3837ralbidva 2431 . 2  |-  ( ph  ->  ( A. x  e.  S  ( F `  x ) R ( G `  x )  <->  A. x  e.  S  C R D ) )
3918, 26, 383bitrd 213 1  |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  S  C R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2414   _Vcvv 2681    i^i cin 3065   class class class wbr 3924   dom cdm 4534    Fn wfn 5113   ` cfv 5118    oRcofr 5974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ofr 5976
This theorem is referenced by:  ofrval  5985  ofrfval2  5991  caofref  5996  caofrss  5999  caoftrn  6000
  Copyright terms: Public domain W3C validator