ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofrfval Unicode version

Theorem ofrfval 5771
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
offval.6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
offval.7  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
Assertion
Ref Expression
ofrfval  |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  S  C R D ) )
Distinct variable groups:    x, A    x, F    x, G    ph, x    x, S    x, R
Allowed substitution hints:    B( x)    C( x)    D( x)    V( x)    W( x)

Proof of Theorem ofrfval
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4  |-  ( ph  ->  F  Fn  A )
2 offval.3 . . . 4  |-  ( ph  ->  A  e.  V )
3 fnex 5435 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  V )  ->  F  e.  _V )
41, 2, 3syl2anc 403 . . 3  |-  ( ph  ->  F  e.  _V )
5 offval.2 . . . 4  |-  ( ph  ->  G  Fn  B )
6 offval.4 . . . 4  |-  ( ph  ->  B  e.  W )
7 fnex 5435 . . . 4  |-  ( ( G  Fn  B  /\  B  e.  W )  ->  G  e.  _V )
85, 6, 7syl2anc 403 . . 3  |-  ( ph  ->  G  e.  _V )
9 dmeq 4583 . . . . . 6  |-  ( f  =  F  ->  dom  f  =  dom  F )
10 dmeq 4583 . . . . . 6  |-  ( g  =  G  ->  dom  g  =  dom  G )
119, 10ineqan12d 3185 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( dom  f  i^i 
dom  g )  =  ( dom  F  i^i  dom 
G ) )
12 fveq1 5228 . . . . . 6  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
13 fveq1 5228 . . . . . 6  |-  ( g  =  G  ->  (
g `  x )  =  ( G `  x ) )
1412, 13breqan12d 3820 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  x ) R ( g `  x )  <-> 
( F `  x
) R ( G `
 x ) ) )
1511, 14raleqbidv 2566 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  ( dom  f  i^i 
dom  g ) ( f `  x ) R ( g `  x )  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
) ) )
16 df-ofr 5764 . . . 4  |-  oR R  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) R ( g `
 x ) }
1715, 16brabga 4047 . . 3  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F  oR R G  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
) ) )
184, 8, 17syl2anc 403 . 2  |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
) ) )
19 fndm 5049 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
201, 19syl 14 . . . . 5  |-  ( ph  ->  dom  F  =  A )
21 fndm 5049 . . . . . 6  |-  ( G  Fn  B  ->  dom  G  =  B )
225, 21syl 14 . . . . 5  |-  ( ph  ->  dom  G  =  B )
2320, 22ineq12d 3184 . . . 4  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  ( A  i^i  B ) )
24 offval.5 . . . 4  |-  ( A  i^i  B )  =  S
2523, 24syl6eq 2131 . . 3  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  S )
2625raleqdv 2560 . 2  |-  ( ph  ->  ( A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
)  <->  A. x  e.  S  ( F `  x ) R ( G `  x ) ) )
27 inss1 3202 . . . . . . 7  |-  ( A  i^i  B )  C_  A
2824, 27eqsstr3i 3039 . . . . . 6  |-  S  C_  A
2928sseli 3004 . . . . 5  |-  ( x  e.  S  ->  x  e.  A )
30 offval.6 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
3129, 30sylan2 280 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  ( F `  x )  =  C )
32 inss2 3203 . . . . . . 7  |-  ( A  i^i  B )  C_  B
3324, 32eqsstr3i 3039 . . . . . 6  |-  S  C_  B
3433sseli 3004 . . . . 5  |-  ( x  e.  S  ->  x  e.  B )
35 offval.7 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
3634, 35sylan2 280 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  ( G `  x )  =  D )
3731, 36breq12d 3818 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  (
( F `  x
) R ( G `
 x )  <->  C R D ) )
3837ralbidva 2369 . 2  |-  ( ph  ->  ( A. x  e.  S  ( F `  x ) R ( G `  x )  <->  A. x  e.  S  C R D ) )
3918, 26, 383bitrd 212 1  |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  S  C R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   A.wral 2353   _Vcvv 2610    i^i cin 2981   class class class wbr 3805   dom cdm 4391    Fn wfn 4947   ` cfv 4952    oRcofr 5762
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ofr 5764
This theorem is referenced by:  ofrval  5773  ofrfval2  5778  caofref  5783  caofrss  5786  caoftrn  5787
  Copyright terms: Public domain W3C validator