![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > olc | Unicode version |
Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
olc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | jaob 664 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 143 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | simpri 111 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-io 663 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: pm1.4 679 olci 684 pm2.07 689 pm2.46 691 biorf 696 pm1.5 715 pm2.41 726 pm3.48 732 ordi 763 andi 765 pm4.72 770 pm2.54dc 824 oibabs 834 pm4.78i 842 pm2.85dc 845 dcor 877 dedlemb 912 xoranor 1309 19.33 1414 hbor 1479 nford 1500 19.30dc 1559 19.43 1560 19.32r 1611 euor2 2000 mooran2 2015 r19.32r 2502 undif3ss 3232 undif4 3313 issod 4082 onsucelsucexmid 4281 sucprcreg 4300 0elnn 4366 acexmidlemph 5536 nntri3or 6137 swoord1 6201 swoord2 6202 addlocprlem 6787 nqprloc 6797 apreap 7754 zletric 8476 zlelttric 8477 zmulcl 8485 zdceq 8504 zdcle 8505 zdclt 8506 nn0lt2 8510 elnn1uz2 8775 mnflt 8934 mnfltpnf 8936 xrltso 8947 fzdcel 9135 fzm1 9193 qletric 9330 qlelttric 9331 qdceq 9333 nn0o1gt2 10449 decidin 10758 |
Copyright terms: Public domain | W3C validator |